1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/tests/optimizers/test_tabu_search.py

64 lines
1.7 KiB

import sys
sys.path.append("../../classes/")
import glob
import math
import os
import unittest
import networkx as nx
import numpy as np
import psutil
from line_profiler import LineProfiler
import copy
import utility.cache as ch
import structure_graph.sample_path as sp
import estimators.structure_score_based_estimator as se
import utility.json_importer as ji
class TestTabuSearch(unittest.TestCase):
@classmethod
def setUpClass(cls):
#cls.read_files = glob.glob(os.path.join('../../data', "*.json"))
cls.importer = ji.JsonImporter("../../data/networks_and_trajectories_ternary_data_5.json", 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.importer.import_data(0)
cls.s1 = sp.SamplePath(cls.importer)
#cls.traj = cls.s1.concatenated_samples
# print(len(cls.traj))
cls.s1 = sp.SamplePath(cls.importer)
cls.s1.build_trajectories()
cls.s1.build_structure()
cls.s1.clear_memory()
def test_structure(self):
true_edges = copy.deepcopy(self.s1.structure.edges)
true_edges = set(map(tuple, true_edges))
se1 = se.StructureScoreBasedEstimator(self.s1)
edges = se1.estimate_structure(
max_parents = None,
iterations_number = 100,
patience = 20,
tabu_length = 10,
tabu_rules_duration = 10,
optimizer = 'tabu',
disable_multiprocessing=False
)
self.assertEqual(edges, true_edges)
if __name__ == '__main__':
unittest.main()