1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/parameters_estimator.py

116 lines
4.7 KiB

import os
import time as tm
from line_profiler import LineProfiler
import numpy as np
import network_graph as ng
import sample_path as sp
import amalgamated_cims as acims
class ParametersEstimator:
def __init__(self, sample_path, net_graph):
self.sample_path = sample_path
self.net_graph = net_graph
self.fancy_indexing_structure = self.net_graph.build_fancy_indexing_structure(1)
self.amalgamated_cims_struct = None
def init_amalgamated_cims_struct(self):
self.amalgamated_cims_struct = acims.AmalgamatedCims(self.net_graph.get_states_number_of_all_nodes_sorted(),
self.net_graph.get_nodes(),
self.net_graph.get_ordered_by_indx_parents_values_for_all_nodes())
def parameters_estimation(self):
#print("Starting computing")
#t0 = tm.time()
for indx, trajectory in enumerate(self.sample_path.trajectories):
self.parameters_estimation_single_trajectory(trajectory.get_trajectory())
#print("Finished Trajectory number", indx)
#t1 = tm.time() - t0
#print("Elapsed Time ", t1)
def parameters_estimation_single_trajectory(self, trajectory):
tr_len = trajectory.shape[0]
row_length = trajectory.shape[1]
print(tr_len)
print(row_length)
t0 = tm.time()
for indx, row in enumerate(trajectory):
""" #if int(trajectory[indx][1]) == -1:
#break
if indx == tr_len - 2:
break
if trajectory[indx + 1][1] != -1:
transition = self.find_transition(trajectory[indx], trajectory[indx + 1], row_length)
which_node = transition[0]
# print(which_node)
which_matrix = self.which_matrix_to_update(row, transition[0])
which_element = transition[1]
self.amalgamated_cims_struct.update_state_transition_for_matrix(which_node, which_matrix, which_element)
#changed_node = which_node
if int(trajectory[indx][0]) == 0:
time = trajectory[indx + 1][0]
#time = self.compute_time_delta(trajectory[indx], trajectory[indx + 1])
which_element = transition[1][0]
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(which_node, which_matrix, which_element,
time)
for node_indx in range(0, 3):
if node_indx != transition[0]:
# print(node)
which_node = node_indx
which_matrix = self.which_matrix_to_update(row, node_indx)
which_element = int(row[node_indx + 1])
# print("State res time element " + str(which_element) + node)
# print("State res time matrix indx" + str(which_matrix))
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(which_node, which_matrix,
which_element, time)
t1 = tm.time() - t0
print("Elapsed Time ", t1)"""
def find_transition(self, current_row, next_row, row_length):
for indx in range(1, row_length):
if current_row[indx] != next_row[indx]:
return [indx - 1, (current_row[indx], next_row[indx])]
def compute_time_delta(self, current_row, next_row):
return next_row[0] - current_row[0]
def which_matrix_to_update(self, current_row, node_indx): # produce strutture {'X':1, 'Y':2} dove X e Y sono i parent di node_id
return current_row[self.fancy_indexing_structure[node_indx]]
# Simple Test #
os.getcwd()
os.chdir('..')
path = os.getcwd() + '/data'
s1 = sp.SamplePath(path)
s1.build_trajectories()
s1.build_structure()
g1 = ng.NetworkGraph(s1.structure)
g1.init_graph()
pe = ParametersEstimator(s1, g1)
pe.init_amalgamated_cims_struct()
print(pe.amalgamated_cims_struct.get_set_of_cims(0).get_cims_number())
print(pe.amalgamated_cims_struct.get_set_of_cims(1).get_cims_number())
print(pe.amalgamated_cims_struct.get_set_of_cims(2).get_cims_number())
#pe.parameters_estimation_single_trajectory(pe.sample_path.trajectories[0].get_trajectory())
lp = LineProfiler()
lp_wrapper = lp(pe.parameters_estimation_single_trajectory)
lp_wrapper(pe.sample_path.trajectories.get_trajectory())
lp.print_stats()
#pe.parameters_estimation()
"""for matrix in pe.amalgamated_cims_struct.get_set_of_cims(1).actual_cims:
print(matrix.state_residence_times)
print(matrix.state_transition_matrix)
matrix.compute_cim_coefficients()
print(matrix.cim)"""