Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.7 KiB
116 lines
4.7 KiB
import os
|
|
import time as tm
|
|
from line_profiler import LineProfiler
|
|
import numpy as np
|
|
|
|
import network_graph as ng
|
|
import sample_path as sp
|
|
import amalgamated_cims as acims
|
|
|
|
|
|
class ParametersEstimator:
|
|
|
|
def __init__(self, sample_path, net_graph):
|
|
self.sample_path = sample_path
|
|
self.net_graph = net_graph
|
|
self.fancy_indexing_structure = self.net_graph.build_fancy_indexing_structure(1)
|
|
self.amalgamated_cims_struct = None
|
|
|
|
def init_amalgamated_cims_struct(self):
|
|
self.amalgamated_cims_struct = acims.AmalgamatedCims(self.net_graph.get_states_number_of_all_nodes_sorted(),
|
|
self.net_graph.get_nodes(),
|
|
self.net_graph.get_ordered_by_indx_parents_values_for_all_nodes())
|
|
|
|
def parameters_estimation(self):
|
|
#print("Starting computing")
|
|
#t0 = tm.time()
|
|
for indx, trajectory in enumerate(self.sample_path.trajectories):
|
|
self.parameters_estimation_single_trajectory(trajectory.get_trajectory())
|
|
#print("Finished Trajectory number", indx)
|
|
#t1 = tm.time() - t0
|
|
#print("Elapsed Time ", t1)
|
|
|
|
def parameters_estimation_single_trajectory(self, trajectory):
|
|
tr_len = trajectory.shape[0]
|
|
row_length = trajectory.shape[1]
|
|
print(tr_len)
|
|
print(row_length)
|
|
t0 = tm.time()
|
|
for indx, row in enumerate(trajectory):
|
|
""" #if int(trajectory[indx][1]) == -1:
|
|
#break
|
|
if indx == tr_len - 2:
|
|
break
|
|
if trajectory[indx + 1][1] != -1:
|
|
transition = self.find_transition(trajectory[indx], trajectory[indx + 1], row_length)
|
|
which_node = transition[0]
|
|
# print(which_node)
|
|
which_matrix = self.which_matrix_to_update(row, transition[0])
|
|
which_element = transition[1]
|
|
self.amalgamated_cims_struct.update_state_transition_for_matrix(which_node, which_matrix, which_element)
|
|
|
|
#changed_node = which_node
|
|
if int(trajectory[indx][0]) == 0:
|
|
time = trajectory[indx + 1][0]
|
|
#time = self.compute_time_delta(trajectory[indx], trajectory[indx + 1])
|
|
which_element = transition[1][0]
|
|
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(which_node, which_matrix, which_element,
|
|
time)
|
|
|
|
for node_indx in range(0, 3):
|
|
if node_indx != transition[0]:
|
|
# print(node)
|
|
which_node = node_indx
|
|
which_matrix = self.which_matrix_to_update(row, node_indx)
|
|
which_element = int(row[node_indx + 1])
|
|
# print("State res time element " + str(which_element) + node)
|
|
# print("State res time matrix indx" + str(which_matrix))
|
|
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(which_node, which_matrix,
|
|
which_element, time)
|
|
t1 = tm.time() - t0
|
|
print("Elapsed Time ", t1)"""
|
|
|
|
def find_transition(self, current_row, next_row, row_length):
|
|
for indx in range(1, row_length):
|
|
if current_row[indx] != next_row[indx]:
|
|
return [indx - 1, (current_row[indx], next_row[indx])]
|
|
|
|
def compute_time_delta(self, current_row, next_row):
|
|
return next_row[0] - current_row[0]
|
|
|
|
def which_matrix_to_update(self, current_row, node_indx): # produce strutture {'X':1, 'Y':2} dove X e Y sono i parent di node_id
|
|
return current_row[self.fancy_indexing_structure[node_indx]]
|
|
|
|
|
|
|
|
|
|
|
|
# Simple Test #
|
|
os.getcwd()
|
|
os.chdir('..')
|
|
path = os.getcwd() + '/data'
|
|
|
|
s1 = sp.SamplePath(path)
|
|
s1.build_trajectories()
|
|
s1.build_structure()
|
|
|
|
g1 = ng.NetworkGraph(s1.structure)
|
|
g1.init_graph()
|
|
|
|
pe = ParametersEstimator(s1, g1)
|
|
pe.init_amalgamated_cims_struct()
|
|
print(pe.amalgamated_cims_struct.get_set_of_cims(0).get_cims_number())
|
|
print(pe.amalgamated_cims_struct.get_set_of_cims(1).get_cims_number())
|
|
print(pe.amalgamated_cims_struct.get_set_of_cims(2).get_cims_number())
|
|
#pe.parameters_estimation_single_trajectory(pe.sample_path.trajectories[0].get_trajectory())
|
|
lp = LineProfiler()
|
|
lp_wrapper = lp(pe.parameters_estimation_single_trajectory)
|
|
lp_wrapper(pe.sample_path.trajectories.get_trajectory())
|
|
lp.print_stats()
|
|
#pe.parameters_estimation()
|
|
"""for matrix in pe.amalgamated_cims_struct.get_set_of_cims(1).actual_cims:
|
|
print(matrix.state_residence_times)
|
|
print(matrix.state_transition_matrix)
|
|
matrix.compute_cim_coefficients()
|
|
print(matrix.cim)"""
|
|
|
|
|