1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/tests/structure_graph/test_trajectorygenerator.py

59 lines
2.8 KiB

#!/usr/bin/env python3
import unittest
import random
from pyctbn.legacy.structure_graph.trajectory import Trajectory
from pyctbn.legacy.structure_graph.trajectory_generator import TrajectoryGenerator
from pyctbn.legacy.utility.json_importer import JsonImporter
class TestTrajectoryGenerator(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.j1 = JsonImporter(file_path = "./tests/data/networks_and_trajectories_binary_data_01_3.json", samples_label = "samples",
structure_label = "dyn.str", variables_label = "variables",
cims_label = "dyn.cims", time_key = "Time",
variables_key = "Name")
cls.j1.import_data(0)
def test_init(self):
tg = TrajectoryGenerator(self.j1)
self.assertEqual(len(tg._vnames), len(self.j1.variables))
self.assertIsInstance(tg._vnames, list)
self.assertIsInstance(tg._parents, dict)
self.assertIsInstance(tg._cims, dict)
self.assertListEqual(list(tg._parents.keys()), tg._vnames)
self.assertListEqual(list(tg._cims.keys()), tg._vnames)
def test_generated_trajectory(self):
tg = TrajectoryGenerator(self.j1)
end_time = random.randint(5, 100)
sigma = tg.CTBN_Sample(end_time)
traj = Trajectory(self.j1.build_list_of_samples_array(sigma), len(self.j1.sorter) + 1)
self.assertLessEqual(traj.times[len(traj.times) - 1], end_time)
for index in range(len(traj.times)):
if index > 0:
self.assertLess(traj.times[index - 1], traj.times[index])
if index < len(traj.times) - 1:
diff = abs(sum(traj.trajectory[index - 1]) - sum(traj.trajectory[index]))
self.assertEqual(diff, 1)
self.assertEqual(sum(traj.trajectory[len(traj.times) - 1]), -1 * len(self.j1.sorter))
def test_generated_trajectory_max_tr(self):
tg = TrajectoryGenerator(self.j1)
n_tr = random.randint(5, 100)
sigma = tg.CTBN_Sample(max_tr = n_tr)
traj = Trajectory(self.j1.build_list_of_samples_array(sigma), len(self.j1.sorter) + 1)
self.assertEqual(len(traj.times), n_tr + 1)
def test_multi_trajectory(self):
tg = TrajectoryGenerator(self.j1)
max_trs = [random.randint(5, 100) for i in range(10)]
trajectories = tg.multi_trajectory(max_trs = max_trs)
self.assertEqual(len(trajectories), len(max_trs))
self.assertTrue({len(trajectory) for trajectory in trajectories} == {max_tr + 1 for max_tr in max_trs})
t_ends = [random.randint(100, 500) for i in range(10)]
trajectories = tg.multi_trajectory(t_ends = t_ends)
self.assertEqual(len(trajectories), len(t_ends))
if __name__ == '__main__':
unittest.main()