1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/tests/optimizers/test_hill_climbing_search.py

120 lines
3.7 KiB

#!/usr/bin/env python3
# License: MIT License
import glob
import math
import os
import unittest
import networkx as nx
import numpy as np
import psutil
import copy
import json
import pandas as pd
from pyctbn.legacy.structure_graph.sample_path import SamplePath
from pyctbn.legacy.estimators.structure_score_based_estimator import StructureScoreBasedEstimator
from pyctbn.legacy.utility.json_importer import JsonImporter
from pyctbn.legacy.utility.sample_importer import SampleImporter
class TestHillClimbingSearch(unittest.TestCase):
@classmethod
def setUpClass(cls):
#cls.read_files = glob.glob(os.path.join('../../data', "*.json"))
cls.importer = JsonImporter("./tests/data/networks_and_trajectories_binary_data_01_3.json", 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.importer.import_data(0)
cls.s1 = SamplePath(cls.importer)
cls.s1.build_trajectories()
cls.s1.build_structure()
def test_structure(self):
true_edges = copy.deepcopy(self.s1.structure.edges)
true_edges = set(map(tuple, true_edges))
se1 = StructureScoreBasedEstimator(self.s1)
edges = se1.estimate_structure(
max_parents = 2,
iterations_number = 40,
patience = None,
optimizer = 'hill',
disable_multiprocessing=True
)
self.assertEqual(edges, true_edges)
def test_structure_3(self):
with open("./tests/data/networks_and_trajectories_ternary_data_01_6_1.json") as f:
raw_data = json.load(f)
trajectory_list_raw= raw_data["samples"]
# Convert to DataFrame
trajectory_list = [pd.DataFrame(sample) for sample in trajectory_list_raw]
variables= raw_data["variables"]
prior_net_structure = raw_data["dyn.str"]
self.importer = SampleImporter(
trajectory_list=trajectory_list,
variables=variables,
prior_net_structure=prior_net_structure
)
self.importer.import_data()
#cls.s1 = sp.SamplePath(cls.importer)
#cls.traj = cls.s1.concatenated_samples
# print(len(cls.traj))
self.s1 = SamplePath(self.importer)
self.s1.build_trajectories()
self.s1.build_structure()
true_edges = copy.deepcopy(self.s1.structure.edges)
true_edges = set(map(tuple, true_edges))
known_edges = self.s1.structure.edges[0:2]
se1 = StructureScoreBasedEstimator(self.s1,known_edges=known_edges)
edges = se1.estimate_structure(
max_parents = 3,
iterations_number = 100,
patience = 40,
optimizer = 'hill',
disable_multiprocessing=True
)
'calculate precision and recall'
n_missing_edges = 0
n_added_fake_edges = 0
n_added_fake_edges = len(edges.difference(true_edges))
n_missing_edges = len(true_edges.difference(edges))
n_true_positive = len(true_edges) - n_missing_edges
precision = n_true_positive / (n_true_positive + n_added_fake_edges)
recall = n_true_positive / (n_true_positive + n_missing_edges)
self.assertGreaterEqual(precision,0.75)
self.assertGreaterEqual(recall,0.75)
if __name__ == '__main__':
unittest.main()