1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/tests/estimators/test_parameters_estimator.py

71 lines
2.8 KiB

#!/usr/bin/env python3
# License: MIT License
import unittest
import numpy as np
import glob
import os
from pyctbn.legacy.structure_graph.network_graph import NetworkGraph
from pyctbn.legacy.structure_graph.sample_path import SamplePath
from pyctbn.legacy.structure_graph.set_of_cims import SetOfCims
from pyctbn.legacy.estimators.parameters_estimator import ParametersEstimator
from pyctbn.legacy.utility.json_importer import JsonImporter
class TestParametersEstimatior(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.read_files = glob.glob(os.path.join('./tests/data/networks_and_trajectories_binary_data_01_3.json', "*.json"))
cls.array_indx = 0
cls.importer = JsonImporter('./tests/data/networks_and_trajectories_binary_data_01_3.json', 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.importer.import_data(cls.array_indx)
cls.s1 = SamplePath(cls.importer)
cls.s1.build_trajectories()
cls.s1.build_structure()
print(cls.s1.structure.edges)
print(cls.s1.structure.nodes_values)
def test_fast_init(self):
for node in self.s1.structure.nodes_labels:
g = NetworkGraph(self.s1.structure)
g.fast_init(node)
p1 = ParametersEstimator(self.s1.trajectories, g)
self.assertEqual(p1._trajectories, self.s1.trajectories)
self.assertEqual(p1._net_graph, g)
self.assertIsNone(p1._single_set_of_cims)
p1.fast_init(node)
self.assertIsInstance(p1._single_set_of_cims, SetOfCims)
def test_compute_parameters_for_node(self):
for indx, node in enumerate(self.s1.structure.nodes_labels):
print(node)
g = NetworkGraph(self.s1.structure)
g.fast_init(node)
p1 = ParametersEstimator(self.s1.trajectories, g)
p1.fast_init(node)
sofc1 = p1.compute_parameters_for_node(node)
sampled_cims = self.aux_import_sampled_cims('dyn.cims')
sc = list(sampled_cims.values())
self.equality_of_cims_of_node(sc[indx], sofc1._actual_cims)
def equality_of_cims_of_node(self, sampled_cims, estimated_cims):
self.assertEqual(len(sampled_cims), len(estimated_cims))
for c1, c2 in zip(sampled_cims, estimated_cims):
self.cim_equality_test(c1, c2.cim)
def cim_equality_test(self, cim1, cim2):
for r1, r2 in zip(cim1, cim2):
self.assertTrue(np.all(np.isclose(r1, r2, 1e01)))
def aux_import_sampled_cims(self, cims_label):
i1 = JsonImporter('./tests/data/networks_and_trajectories_binary_data_01_3.json', '', '', '', '', '')
raw_data = i1.read_json_file()
return i1.import_sampled_cims(raw_data, self.array_indx, cims_label)
if __name__ == '__main__':
unittest.main()