import sys sys.path.append("../../classes/") import glob import math import os import unittest import networkx as nx import numpy as np import pandas as pd import psutil from line_profiler import LineProfiler import copy import json import utility.cache as ch import structure_graph.sample_path as sp import estimators.structure_score_based_estimator as se import utility.json_importer as ji import utility.sample_importer as si class TestTabuSearch(unittest.TestCase): @classmethod def setUpClass(cls): #cls.read_files = glob.glob(os.path.join('../../data', "*.json")) with open("../../data/networks_and_trajectories_binary_data_01_3.json") as f: raw_data = json.load(f) trajectory_list_raw= raw_data[0]["samples"] trajectory_list = [pd.DataFrame(sample) for sample in trajectory_list_raw] variables= pd.DataFrame(raw_data[0]["variables"]) prior_net_structure = pd.DataFrame(raw_data[0]["dyn.str"]) cls.importer = si.SampleImporter( trajectory_list=trajectory_list, variables=variables, prior_net_structure=prior_net_structure ) cls.importer.import_data(0) cls.s1 = sp.SamplePath(cls.importer) #cls.traj = cls.s1.concatenated_samples # print(len(cls.traj)) cls.s1 = sp.SamplePath(cls.importer) cls.s1.build_trajectories() cls.s1.build_structure() cls.s1.clear_memory() def test_structure(self): true_edges = copy.deepcopy(self.s1.structure.edges) true_edges = set(map(tuple, true_edges)) se1 = se.StructureScoreBasedEstimator(self.s1) edges = se1.estimate_structure( max_parents = None, iterations_number = 100, patience = 20, tabu_length = 10, tabu_rules_duration = 10, optimizer = 'tabu', disable_multiprocessing=False ) self.assertEqual(edges, true_edges) if __name__ == '__main__': unittest.main()