from __future__ import absolute_import, division from .auto import tqdm as tqdm_auto from copy import copy from functools import partial try: import keras except ImportError as e: try: from tensorflow import keras except ImportError: raise e __author__ = {"github.com/": ["casperdcl"]} __all__ = ['TqdmCallback'] class TqdmCallback(keras.callbacks.Callback): """`keras` callback for epoch and batch progress""" @staticmethod def bar2callback(bar, pop=None, delta=(lambda logs: 1)): def callback(_, logs=None): n = delta(logs) if logs: if pop: logs = copy(logs) [logs.pop(i, 0) for i in pop] bar.set_postfix(logs, refresh=False) bar.update(n) return callback def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1, tqdm_class=tqdm_auto, **tqdm_kwargs): """ Parameters ---------- epochs : int, optional data_size : int, optional Number of training pairs. batch_size : int, optional Number of training pairs per batch. verbose : int 0: epoch, 1: batch (transient), 2: batch. [default: 1]. Will be set to `0` unless both `data_size` and `batch_size` are given. tqdm_class : optional `tqdm` class to use for bars [default: `tqdm.auto.tqdm`]. tqdm_kwargs : optional Any other arguments used for all bars. """ if tqdm_kwargs: tqdm_class = partial(tqdm_class, **tqdm_kwargs) self.tqdm_class = tqdm_class self.epoch_bar = tqdm_class(total=epochs, unit='epoch') self.on_epoch_end = self.bar2callback(self.epoch_bar) if data_size and batch_size: self.batches = batches = (data_size + batch_size - 1) // batch_size else: self.batches = batches = None self.verbose = verbose if verbose == 1: self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False) self.on_batch_end = self.bar2callback( self.batch_bar, pop=['batch', 'size'], delta=lambda logs: logs.get('size', 1)) def on_train_begin(self, *_, **__): params = self.params.get auto_total = params('epochs', params('nb_epoch', None)) if auto_total is not None: self.epoch_bar.reset(total=auto_total) def on_epoch_begin(self, *_, **__): if self.verbose: params = self.params.get total = params('samples', params( 'nb_sample', params('steps', None))) or self.batches if self.verbose == 2: if hasattr(self, 'batch_bar'): self.batch_bar.close() self.batch_bar = self.tqdm_class( total=total, unit='batch', leave=True, unit_scale=1 / (params('batch_size', 1) or 1)) self.on_batch_end = self.bar2callback( self.batch_bar, pop=['batch', 'size'], delta=lambda logs: logs.get('size', 1)) elif self.verbose == 1: self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1) self.batch_bar.reset(total=total) else: raise KeyError('Unknown verbosity') def on_train_end(self, *_, **__): if self.verbose: self.batch_bar.close() self.epoch_bar.close() def display(self): """displays in the current cell in Notebooks""" container = getattr(self.epoch_bar, 'container', None) if container is None: return from .notebook import display display(container) batch_bar = getattr(self, 'batch_bar', None) if batch_bar is not None: display(batch_bar.container) @staticmethod def _implements_train_batch_hooks(): return True @staticmethod def _implements_test_batch_hooks(): return True @staticmethod def _implements_predict_batch_hooks(): return True