""" differential_evolution: The differential evolution global optimization algorithm Added by Andrew Nelson 2014 """ import warnings import numpy as np from scipy.optimize import OptimizeResult, minimize from scipy.optimize.optimize import _status_message from scipy._lib._util import check_random_state, MapWrapper from scipy.optimize._constraints import (Bounds, new_bounds_to_old, NonlinearConstraint, LinearConstraint) from scipy.sparse import issparse __all__ = ['differential_evolution'] _MACHEPS = np.finfo(np.float64).eps def differential_evolution(func, bounds, args=(), strategy='best1bin', maxiter=1000, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='immediate', workers=1, constraints=()): """Finds the global minimum of a multivariate function. Differential Evolution is stochastic in nature (does not use gradient methods) to find the minimum, and can search large areas of candidate space, but often requires larger numbers of function evaluations than conventional gradient-based techniques. The algorithm is due to Storn and Price [1]_. Parameters ---------- func : callable The objective function to be minimized. Must be in the form ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array and ``args`` is a tuple of any additional fixed parameters needed to completely specify the function. bounds : sequence or `Bounds`, optional Bounds for variables. There are two ways to specify the bounds: 1. Instance of `Bounds` class. 2. ``(min, max)`` pairs for each element in ``x``, defining the finite lower and upper bounds for the optimizing argument of `func`. It is required to have ``len(bounds) == len(x)``. ``len(bounds)`` is used to determine the number of parameters in ``x``. args : tuple, optional Any additional fixed parameters needed to completely specify the objective function. strategy : str, optional The differential evolution strategy to use. Should be one of: - 'best1bin' - 'best1exp' - 'rand1exp' - 'randtobest1exp' - 'currenttobest1exp' - 'best2exp' - 'rand2exp' - 'randtobest1bin' - 'currenttobest1bin' - 'best2bin' - 'rand2bin' - 'rand1bin' The default is 'best1bin'. maxiter : int, optional The maximum number of generations over which the entire population is evolved. The maximum number of function evaluations (with no polishing) is: ``(maxiter + 1) * popsize * len(x)`` popsize : int, optional A multiplier for setting the total population size. The population has ``popsize * len(x)`` individuals (unless the initial population is supplied via the `init` keyword). tol : float, optional Relative tolerance for convergence, the solving stops when ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``, where and `atol` and `tol` are the absolute and relative tolerance respectively. mutation : float or tuple(float, float), optional The mutation constant. In the literature this is also known as differential weight, being denoted by F. If specified as a float it should be in the range [0, 2]. If specified as a tuple ``(min, max)`` dithering is employed. Dithering randomly changes the mutation constant on a generation by generation basis. The mutation constant for that generation is taken from ``U[min, max)``. Dithering can help speed convergence significantly. Increasing the mutation constant increases the search radius, but will slow down convergence. recombination : float, optional The recombination constant, should be in the range [0, 1]. In the literature this is also known as the crossover probability, being denoted by CR. Increasing this value allows a larger number of mutants to progress into the next generation, but at the risk of population stability. seed : {int, `~np.random.RandomState`, `~np.random.Generator`}, optional If `seed` is not specified the `~np.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with seed. If `seed` is already a ``RandomState`` or a ``Generator`` instance, then that object is used. Specify `seed` for repeatable minimizations. disp : bool, optional Prints the evaluated `func` at every iteration. callback : callable, `callback(xk, convergence=val)`, optional A function to follow the progress of the minimization. ``xk`` is the current value of ``x0``. ``val`` represents the fractional value of the population convergence. When ``val`` is greater than one the function halts. If callback returns `True`, then the minimization is halted (any polishing is still carried out). polish : bool, optional If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B` method is used to polish the best population member at the end, which can improve the minimization slightly. If a constrained problem is being studied then the `trust-constr` method is used instead. init : str or array-like, optional Specify which type of population initialization is performed. Should be one of: - 'latinhypercube' - 'random' - array specifying the initial population. The array should have shape ``(M, len(x))``, where M is the total population size and len(x) is the number of parameters. `init` is clipped to `bounds` before use. The default is 'latinhypercube'. Latin Hypercube sampling tries to maximize coverage of the available parameter space. 'random' initializes the population randomly - this has the drawback that clustering can occur, preventing the whole of parameter space being covered. Use of an array to specify a population subset could be used, for example, to create a tight bunch of initial guesses in an location where the solution is known to exist, thereby reducing time for convergence. atol : float, optional Absolute tolerance for convergence, the solving stops when ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``, where and `atol` and `tol` are the absolute and relative tolerance respectively. updating : {'immediate', 'deferred'}, optional If ``'immediate'``, the best solution vector is continuously updated within a single generation [4]_. This can lead to faster convergence as trial vectors can take advantage of continuous improvements in the best solution. With ``'deferred'``, the best solution vector is updated once per generation. Only ``'deferred'`` is compatible with parallelization, and the `workers` keyword can over-ride this option. .. versionadded:: 1.2.0 workers : int or map-like callable, optional If `workers` is an int the population is subdivided into `workers` sections and evaluated in parallel (uses `multiprocessing.Pool `). Supply -1 to use all available CPU cores. Alternatively supply a map-like callable, such as `multiprocessing.Pool.map` for evaluating the population in parallel. This evaluation is carried out as ``workers(func, iterable)``. This option will override the `updating` keyword to ``updating='deferred'`` if ``workers != 1``. Requires that `func` be pickleable. .. versionadded:: 1.2.0 constraints : {NonLinearConstraint, LinearConstraint, Bounds} Constraints on the solver, over and above those applied by the `bounds` kwd. Uses the approach by Lampinen [5]_. .. versionadded:: 1.4.0 Returns ------- res : OptimizeResult The optimization result represented as a `OptimizeResult` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the optimizer exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. If `polish` was employed, and a lower minimum was obtained by the polishing, then OptimizeResult also contains the ``jac`` attribute. If the eventual solution does not satisfy the applied constraints ``success`` will be `False`. Notes ----- Differential evolution is a stochastic population based method that is useful for global optimization problems. At each pass through the population the algorithm mutates each candidate solution by mixing with other candidate solutions to create a trial candidate. There are several strategies [2]_ for creating trial candidates, which suit some problems more than others. The 'best1bin' strategy is a good starting point for many systems. In this strategy two members of the population are randomly chosen. Their difference is used to mutate the best member (the 'best' in 'best1bin'), :math:`b_0`, so far: .. math:: b' = b_0 + mutation * (population[rand0] - population[rand1]) A trial vector is then constructed. Starting with a randomly chosen ith parameter the trial is sequentially filled (in modulo) with parameters from ``b'`` or the original candidate. The choice of whether to use ``b'`` or the original candidate is made with a binomial distribution (the 'bin' in 'best1bin') - a random number in [0, 1) is generated. If this number is less than the `recombination` constant then the parameter is loaded from ``b'``, otherwise it is loaded from the original candidate. The final parameter is always loaded from ``b'``. Once the trial candidate is built its fitness is assessed. If the trial is better than the original candidate then it takes its place. If it is also better than the best overall candidate it also replaces that. To improve your chances of finding a global minimum use higher `popsize` values, with higher `mutation` and (dithering), but lower `recombination` values. This has the effect of widening the search radius, but slowing convergence. By default the best solution vector is updated continuously within a single iteration (``updating='immediate'``). This is a modification [4]_ of the original differential evolution algorithm which can lead to faster convergence as trial vectors can immediately benefit from improved solutions. To use the original Storn and Price behaviour, updating the best solution once per iteration, set ``updating='deferred'``. .. versionadded:: 0.15.0 Examples -------- Let us consider the problem of minimizing the Rosenbrock function. This function is implemented in `rosen` in `scipy.optimize`. >>> from scipy.optimize import rosen, differential_evolution >>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)] >>> result = differential_evolution(rosen, bounds) >>> result.x, result.fun (array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19) Now repeat, but with parallelization. >>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)] >>> result = differential_evolution(rosen, bounds, updating='deferred', ... workers=2) >>> result.x, result.fun (array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19) Let's try and do a constrained minimization >>> from scipy.optimize import NonlinearConstraint, Bounds >>> def constr_f(x): ... return np.array(x[0] + x[1]) >>> >>> # the sum of x[0] and x[1] must be less than 1.9 >>> nlc = NonlinearConstraint(constr_f, -np.inf, 1.9) >>> # specify limits using a `Bounds` object. >>> bounds = Bounds([0., 0.], [2., 2.]) >>> result = differential_evolution(rosen, bounds, constraints=(nlc), ... seed=1) >>> result.x, result.fun (array([0.96633867, 0.93363577]), 0.0011361355854792312) Next find the minimum of the Ackley function (https://en.wikipedia.org/wiki/Test_functions_for_optimization). >>> from scipy.optimize import differential_evolution >>> import numpy as np >>> def ackley(x): ... arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2)) ... arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1])) ... return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e >>> bounds = [(-5, 5), (-5, 5)] >>> result = differential_evolution(ackley, bounds) >>> result.x, result.fun (array([ 0., 0.]), 4.4408920985006262e-16) References ---------- .. [1] Storn, R and Price, K, Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 1997, 11, 341 - 359. .. [2] http://www1.icsi.berkeley.edu/~storn/code.html .. [3] http://en.wikipedia.org/wiki/Differential_evolution .. [4] Wormington, M., Panaccione, C., Matney, K. M., Bowen, D. K., - Characterization of structures from X-ray scattering data using genetic algorithms, Phil. Trans. R. Soc. Lond. A, 1999, 357, 2827-2848 .. [5] Lampinen, J., A constraint handling approach for the differential evolution algorithm. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). Vol. 2. IEEE, 2002. """ # using a context manager means that any created Pool objects are # cleared up. with DifferentialEvolutionSolver(func, bounds, args=args, strategy=strategy, maxiter=maxiter, popsize=popsize, tol=tol, mutation=mutation, recombination=recombination, seed=seed, polish=polish, callback=callback, disp=disp, init=init, atol=atol, updating=updating, workers=workers, constraints=constraints) as solver: ret = solver.solve() return ret class DifferentialEvolutionSolver(object): """This class implements the differential evolution solver Parameters ---------- func : callable The objective function to be minimized. Must be in the form ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array and ``args`` is a tuple of any additional fixed parameters needed to completely specify the function. bounds : sequence or `Bounds`, optional Bounds for variables. There are two ways to specify the bounds: 1. Instance of `Bounds` class. 2. ``(min, max)`` pairs for each element in ``x``, defining the finite lower and upper bounds for the optimizing argument of `func`. It is required to have ``len(bounds) == len(x)``. ``len(bounds)`` is used to determine the number of parameters in ``x``. args : tuple, optional Any additional fixed parameters needed to completely specify the objective function. strategy : str, optional The differential evolution strategy to use. Should be one of: - 'best1bin' - 'best1exp' - 'rand1exp' - 'randtobest1exp' - 'currenttobest1exp' - 'best2exp' - 'rand2exp' - 'randtobest1bin' - 'currenttobest1bin' - 'best2bin' - 'rand2bin' - 'rand1bin' The default is 'best1bin' maxiter : int, optional The maximum number of generations over which the entire population is evolved. The maximum number of function evaluations (with no polishing) is: ``(maxiter + 1) * popsize * len(x)`` popsize : int, optional A multiplier for setting the total population size. The population has ``popsize * len(x)`` individuals (unless the initial population is supplied via the `init` keyword). tol : float, optional Relative tolerance for convergence, the solving stops when ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``, where and `atol` and `tol` are the absolute and relative tolerance respectively. mutation : float or tuple(float, float), optional The mutation constant. In the literature this is also known as differential weight, being denoted by F. If specified as a float it should be in the range [0, 2]. If specified as a tuple ``(min, max)`` dithering is employed. Dithering randomly changes the mutation constant on a generation by generation basis. The mutation constant for that generation is taken from U[min, max). Dithering can help speed convergence significantly. Increasing the mutation constant increases the search radius, but will slow down convergence. recombination : float, optional The recombination constant, should be in the range [0, 1]. In the literature this is also known as the crossover probability, being denoted by CR. Increasing this value allows a larger number of mutants to progress into the next generation, but at the risk of population stability. seed : {int, `~np.random.RandomState`, `~np.random.Generator`}, optional If `seed` is not specified the `~np.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with seed. If `seed` is already a ``RandomState`` or a ``Generator`` instance, then that object is used. Specify `seed` for repeatable minimizations. disp : bool, optional Prints the evaluated `func` at every iteration. callback : callable, `callback(xk, convergence=val)`, optional A function to follow the progress of the minimization. ``xk`` is the current value of ``x0``. ``val`` represents the fractional value of the population convergence. When ``val`` is greater than one the function halts. If callback returns `True`, then the minimization is halted (any polishing is still carried out). polish : bool, optional If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B` method is used to polish the best population member at the end, which can improve the minimization slightly. If a constrained problem is being studied then the `trust-constr` method is used instead. maxfun : int, optional Set the maximum number of function evaluations. However, it probably makes more sense to set `maxiter` instead. init : str or array-like, optional Specify which type of population initialization is performed. Should be one of: - 'latinhypercube' - 'random' - array specifying the initial population. The array should have shape ``(M, len(x))``, where M is the total population size and len(x) is the number of parameters. `init` is clipped to `bounds` before use. The default is 'latinhypercube'. Latin Hypercube sampling tries to maximize coverage of the available parameter space. 'random' initializes the population randomly - this has the drawback that clustering can occur, preventing the whole of parameter space being covered. Use of an array to specify a population could be used, for example, to create a tight bunch of initial guesses in an location where the solution is known to exist, thereby reducing time for convergence. atol : float, optional Absolute tolerance for convergence, the solving stops when ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``, where and `atol` and `tol` are the absolute and relative tolerance respectively. updating : {'immediate', 'deferred'}, optional If `immediate` the best solution vector is continuously updated within a single generation. This can lead to faster convergence as trial vectors can take advantage of continuous improvements in the best solution. With `deferred` the best solution vector is updated once per generation. Only `deferred` is compatible with parallelization, and the `workers` keyword can over-ride this option. workers : int or map-like callable, optional If `workers` is an int the population is subdivided into `workers` sections and evaluated in parallel (uses `multiprocessing.Pool `). Supply `-1` to use all cores available to the Process. Alternatively supply a map-like callable, such as `multiprocessing.Pool.map` for evaluating the population in parallel. This evaluation is carried out as ``workers(func, iterable)``. This option will override the `updating` keyword to `updating='deferred'` if `workers != 1`. Requires that `func` be pickleable. constraints : {NonLinearConstraint, LinearConstraint, Bounds} Constraints on the solver, over and above those applied by the `bounds` kwd. Uses the approach by Lampinen. """ # Dispatch of mutation strategy method (binomial or exponential). _binomial = {'best1bin': '_best1', 'randtobest1bin': '_randtobest1', 'currenttobest1bin': '_currenttobest1', 'best2bin': '_best2', 'rand2bin': '_rand2', 'rand1bin': '_rand1'} _exponential = {'best1exp': '_best1', 'rand1exp': '_rand1', 'randtobest1exp': '_randtobest1', 'currenttobest1exp': '_currenttobest1', 'best2exp': '_best2', 'rand2exp': '_rand2'} __init_error_msg = ("The population initialization method must be one of " "'latinhypercube' or 'random', or an array of shape " "(M, N) where N is the number of parameters and M>5") def __init__(self, func, bounds, args=(), strategy='best1bin', maxiter=1000, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None, maxfun=np.inf, callback=None, disp=False, polish=True, init='latinhypercube', atol=0, updating='immediate', workers=1, constraints=()): if strategy in self._binomial: self.mutation_func = getattr(self, self._binomial[strategy]) elif strategy in self._exponential: self.mutation_func = getattr(self, self._exponential[strategy]) else: raise ValueError("Please select a valid mutation strategy") self.strategy = strategy self.callback = callback self.polish = polish # set the updating / parallelisation options if updating in ['immediate', 'deferred']: self._updating = updating # want to use parallelisation, but updating is immediate if workers != 1 and updating == 'immediate': warnings.warn("differential_evolution: the 'workers' keyword has" " overridden updating='immediate' to" " updating='deferred'", UserWarning) self._updating = 'deferred' # an object with a map method. self._mapwrapper = MapWrapper(workers) # relative and absolute tolerances for convergence self.tol, self.atol = tol, atol # Mutation constant should be in [0, 2). If specified as a sequence # then dithering is performed. self.scale = mutation if (not np.all(np.isfinite(mutation)) or np.any(np.array(mutation) >= 2) or np.any(np.array(mutation) < 0)): raise ValueError('The mutation constant must be a float in ' 'U[0, 2), or specified as a tuple(min, max)' ' where min < max and min, max are in U[0, 2).') self.dither = None if hasattr(mutation, '__iter__') and len(mutation) > 1: self.dither = [mutation[0], mutation[1]] self.dither.sort() self.cross_over_probability = recombination # we create a wrapped function to allow the use of map (and Pool.map # in the future) self.func = _FunctionWrapper(func, args) self.args = args # convert tuple of lower and upper bounds to limits # [(low_0, high_0), ..., (low_n, high_n] # -> [[low_0, ..., low_n], [high_0, ..., high_n]] if isinstance(bounds, Bounds): self.limits = np.array(new_bounds_to_old(bounds.lb, bounds.ub, len(bounds.lb)), dtype=float).T else: self.limits = np.array(bounds, dtype='float').T if (np.size(self.limits, 0) != 2 or not np.all(np.isfinite(self.limits))): raise ValueError('bounds should be a sequence containing ' 'real valued (min, max) pairs for each value' ' in x') if maxiter is None: # the default used to be None maxiter = 1000 self.maxiter = maxiter if maxfun is None: # the default used to be None maxfun = np.inf self.maxfun = maxfun # population is scaled to between [0, 1]. # We have to scale between parameter <-> population # save these arguments for _scale_parameter and # _unscale_parameter. This is an optimization self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1]) self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1]) self.parameter_count = np.size(self.limits, 1) self.random_number_generator = check_random_state(seed) # default population initialization is a latin hypercube design, but # there are other population initializations possible. # the minimum is 5 because 'best2bin' requires a population that's at # least 5 long self.num_population_members = max(5, popsize * self.parameter_count) self.population_shape = (self.num_population_members, self.parameter_count) self._nfev = 0 if isinstance(init, str): if init == 'latinhypercube': self.init_population_lhs() elif init == 'random': self.init_population_random() else: raise ValueError(self.__init_error_msg) else: self.init_population_array(init) # infrastructure for constraints # dummy parameter vector for preparing constraints, this is required so # that the number of constraints is known. x0 = self._scale_parameters(self.population[0]) self.constraints = constraints self._wrapped_constraints = [] if hasattr(constraints, '__len__'): # sequence of constraints, this will also deal with default # keyword parameter for c in constraints: self._wrapped_constraints.append(_ConstraintWrapper(c, x0)) else: self._wrapped_constraints = [_ConstraintWrapper(constraints, x0)] self.constraint_violation = np.zeros((self.num_population_members, 1)) self.feasible = np.ones(self.num_population_members, bool) self.disp = disp def init_population_lhs(self): """ Initializes the population with Latin Hypercube Sampling. Latin Hypercube Sampling ensures that each parameter is uniformly sampled over its range. """ rng = self.random_number_generator # Each parameter range needs to be sampled uniformly. The scaled # parameter range ([0, 1)) needs to be split into # `self.num_population_members` segments, each of which has the following # size: segsize = 1.0 / self.num_population_members # Within each segment we sample from a uniform random distribution. # We need to do this sampling for each parameter. samples = (segsize * rng.uniform(size=self.population_shape) # Offset each segment to cover the entire parameter range [0, 1) + np.linspace(0., 1., self.num_population_members, endpoint=False)[:, np.newaxis]) # Create an array for population of candidate solutions. self.population = np.zeros_like(samples) # Initialize population of candidate solutions by permutation of the # random samples. for j in range(self.parameter_count): order = rng.permutation(range(self.num_population_members)) self.population[:, j] = samples[order, j] # reset population energies self.population_energies = np.full(self.num_population_members, np.inf) # reset number of function evaluations counter self._nfev = 0 def init_population_random(self): """ Initializes the population at random. This type of initialization can possess clustering, Latin Hypercube sampling is generally better. """ rng = self.random_number_generator self.population = rng.uniform(size=self.population_shape) # reset population energies self.population_energies = np.full(self.num_population_members, np.inf) # reset number of function evaluations counter self._nfev = 0 def init_population_array(self, init): """ Initializes the population with a user specified population. Parameters ---------- init : np.ndarray Array specifying subset of the initial population. The array should have shape (M, len(x)), where len(x) is the number of parameters. The population is clipped to the lower and upper bounds. """ # make sure you're using a float array popn = np.asfarray(init) if (np.size(popn, 0) < 5 or popn.shape[1] != self.parameter_count or len(popn.shape) != 2): raise ValueError("The population supplied needs to have shape" " (M, len(x)), where M > 4.") # scale values and clip to bounds, assigning to population self.population = np.clip(self._unscale_parameters(popn), 0, 1) self.num_population_members = np.size(self.population, 0) self.population_shape = (self.num_population_members, self.parameter_count) # reset population energies self.population_energies = np.full(self.num_population_members, np.inf) # reset number of function evaluations counter self._nfev = 0 @property def x(self): """ The best solution from the solver """ return self._scale_parameters(self.population[0]) @property def convergence(self): """ The standard deviation of the population energies divided by their mean. """ if np.any(np.isinf(self.population_energies)): return np.inf return (np.std(self.population_energies) / np.abs(np.mean(self.population_energies) + _MACHEPS)) def converged(self): """ Return True if the solver has converged. """ if np.any(np.isinf(self.population_energies)): return False return (np.std(self.population_energies) <= self.atol + self.tol * np.abs(np.mean(self.population_energies))) def solve(self): """ Runs the DifferentialEvolutionSolver. Returns ------- res : OptimizeResult The optimization result represented as a ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``success`` a Boolean flag indicating if the optimizer exited successfully and ``message`` which describes the cause of the termination. See `OptimizeResult` for a description of other attributes. If `polish` was employed, and a lower minimum was obtained by the polishing, then OptimizeResult also contains the ``jac`` attribute. """ nit, warning_flag = 0, False status_message = _status_message['success'] # The population may have just been initialized (all entries are # np.inf). If it has you have to calculate the initial energies. # Although this is also done in the evolve generator it's possible # that someone can set maxiter=0, at which point we still want the # initial energies to be calculated (the following loop isn't run). if np.all(np.isinf(self.population_energies)): self.feasible, self.constraint_violation = ( self._calculate_population_feasibilities(self.population)) # only work out population energies for feasible solutions self.population_energies[self.feasible] = ( self._calculate_population_energies( self.population[self.feasible])) self._promote_lowest_energy() # do the optimization. for nit in range(1, self.maxiter + 1): # evolve the population by a generation try: next(self) except StopIteration: warning_flag = True if self._nfev > self.maxfun: status_message = _status_message['maxfev'] elif self._nfev == self.maxfun: status_message = ('Maximum number of function evaluations' ' has been reached.') break if self.disp: print("differential_evolution step %d: f(x)= %g" % (nit, self.population_energies[0])) if self.callback: c = self.tol / (self.convergence + _MACHEPS) warning_flag = bool(self.callback(self.x, convergence=c)) if warning_flag: status_message = ('callback function requested stop early' ' by returning True') # should the solver terminate? if warning_flag or self.converged(): break else: status_message = _status_message['maxiter'] warning_flag = True DE_result = OptimizeResult( x=self.x, fun=self.population_energies[0], nfev=self._nfev, nit=nit, message=status_message, success=(warning_flag is not True)) if self.polish: polish_method = 'L-BFGS-B' if self._wrapped_constraints: polish_method = 'trust-constr' constr_violation = self._constraint_violation_fn(DE_result.x) if np.any(constr_violation > 0.): warnings.warn("differential evolution didn't find a" " solution satisfying the constraints," " attempting to polish from the least" " infeasible solution", UserWarning) result = minimize(self.func, np.copy(DE_result.x), method=polish_method, bounds=self.limits.T, constraints=self.constraints) self._nfev += result.nfev DE_result.nfev = self._nfev # Polishing solution is only accepted if there is an improvement in # cost function, the polishing was successful and the solution lies # within the bounds. if (result.fun < DE_result.fun and result.success and np.all(result.x <= self.limits[1]) and np.all(self.limits[0] <= result.x)): DE_result.fun = result.fun DE_result.x = result.x DE_result.jac = result.jac # to keep internal state consistent self.population_energies[0] = result.fun self.population[0] = self._unscale_parameters(result.x) if self._wrapped_constraints: DE_result.constr = [c.violation(DE_result.x) for c in self._wrapped_constraints] DE_result.constr_violation = np.max( np.concatenate(DE_result.constr)) DE_result.maxcv = DE_result.constr_violation if DE_result.maxcv > 0: # if the result is infeasible then success must be False DE_result.success = False DE_result.message = ("The solution does not satisfy the" " constraints, MAXCV = " % DE_result.maxcv) return DE_result def _calculate_population_energies(self, population): """ Calculate the energies of a population. Parameters ---------- population : ndarray An array of parameter vectors normalised to [0, 1] using lower and upper limits. Has shape ``(np.size(population, 0), len(x))``. Returns ------- energies : ndarray An array of energies corresponding to each population member. If maxfun will be exceeded during this call, then the number of function evaluations will be reduced and energies will be right-padded with np.inf. Has shape ``(np.size(population, 0),)`` """ num_members = np.size(population, 0) nfevs = min(num_members, self.maxfun - num_members) energies = np.full(num_members, np.inf) parameters_pop = self._scale_parameters(population) try: calc_energies = list(self._mapwrapper(self.func, parameters_pop[0:nfevs])) energies[0:nfevs] = np.squeeze(calc_energies) except (TypeError, ValueError): # wrong number of arguments for _mapwrapper # or wrong length returned from the mapper raise RuntimeError("The map-like callable must be of the" " form f(func, iterable), returning a sequence" " of numbers the same length as 'iterable'") self._nfev += nfevs return energies def _promote_lowest_energy(self): # swaps 'best solution' into first population entry idx = np.arange(self.num_population_members) feasible_solutions = idx[self.feasible] if feasible_solutions.size: # find the best feasible solution idx_t = np.argmin(self.population_energies[feasible_solutions]) l = feasible_solutions[idx_t] else: # no solution was feasible, use 'best' infeasible solution, which # will violate constraints the least l = np.argmin(np.sum(self.constraint_violation, axis=1)) self.population_energies[[0, l]] = self.population_energies[[l, 0]] self.population[[0, l], :] = self.population[[l, 0], :] self.feasible[[0, l]] = self.feasible[[l, 0]] self.constraint_violation[[0, l], :] = ( self.constraint_violation[[l, 0], :]) def _constraint_violation_fn(self, x): """ Calculates total constraint violation for all the constraints, for a given solution. Parameters ---------- x : ndarray Solution vector Returns ------- cv : ndarray Total violation of constraints. Has shape ``(M,)``, where M is the number of constraints (if each constraint function only returns one value) """ return np.concatenate([c.violation(x) for c in self._wrapped_constraints]) def _calculate_population_feasibilities(self, population): """ Calculate the feasibilities of a population. Parameters ---------- population : ndarray An array of parameter vectors normalised to [0, 1] using lower and upper limits. Has shape ``(np.size(population, 0), len(x))``. Returns ------- feasible, constraint_violation : ndarray, ndarray Boolean array of feasibility for each population member, and an array of the constraint violation for each population member. constraint_violation has shape ``(np.size(population, 0), M)``, where M is the number of constraints. """ num_members = np.size(population, 0) if not self._wrapped_constraints: # shortcut for no constraints return np.ones(num_members, bool), np.zeros((num_members, 1)) parameters_pop = self._scale_parameters(population) constraint_violation = np.array([self._constraint_violation_fn(x) for x in parameters_pop]) feasible = ~(np.sum(constraint_violation, axis=1) > 0) return feasible, constraint_violation def __iter__(self): return self def __enter__(self): return self def __exit__(self, *args): # to make sure resources are closed down self._mapwrapper.close() self._mapwrapper.terminate() def __del__(self): # to make sure resources are closed down self._mapwrapper.close() self._mapwrapper.terminate() def _accept_trial(self, energy_trial, feasible_trial, cv_trial, energy_orig, feasible_orig, cv_orig): """ Trial is accepted if: * it satisfies all constraints and provides a lower or equal objective function value, while both the compared solutions are feasible - or - * it is feasible while the original solution is infeasible, - or - * it is infeasible, but provides a lower or equal constraint violation for all constraint functions. This test corresponds to section III of Lampinen [1]_. Parameters ---------- energy_trial : float Energy of the trial solution feasible_trial : float Feasibility of trial solution cv_trial : array-like Excess constraint violation for the trial solution energy_orig : float Energy of the original solution feasible_orig : float Feasibility of original solution cv_orig : array-like Excess constraint violation for the original solution Returns ------- accepted : bool """ if feasible_orig and feasible_trial: return energy_trial <= energy_orig elif feasible_trial and not feasible_orig: return True elif not feasible_trial and (cv_trial <= cv_orig).all(): # cv_trial < cv_orig would imply that both trial and orig are not # feasible return True return False def __next__(self): """ Evolve the population by a single generation Returns ------- x : ndarray The best solution from the solver. fun : float Value of objective function obtained from the best solution. """ # the population may have just been initialized (all entries are # np.inf). If it has you have to calculate the initial energies if np.all(np.isinf(self.population_energies)): self.feasible, self.constraint_violation = ( self._calculate_population_feasibilities(self.population)) # only need to work out population energies for those that are # feasible self.population_energies[self.feasible] = ( self._calculate_population_energies( self.population[self.feasible])) self._promote_lowest_energy() if self.dither is not None: self.scale = self.random_number_generator.uniform(self.dither[0], self.dither[1]) if self._updating == 'immediate': # update best solution immediately for candidate in range(self.num_population_members): if self._nfev > self.maxfun: raise StopIteration # create a trial solution trial = self._mutate(candidate) # ensuring that it's in the range [0, 1) self._ensure_constraint(trial) # scale from [0, 1) to the actual parameter value parameters = self._scale_parameters(trial) # determine the energy of the objective function if self._wrapped_constraints: cv = self._constraint_violation_fn(parameters) feasible = False energy = np.inf if not np.sum(cv) > 0: # solution is feasible feasible = True energy = self.func(parameters) self._nfev += 1 else: feasible = True cv = np.atleast_2d([0.]) energy = self.func(parameters) self._nfev += 1 # compare trial and population member if self._accept_trial(energy, feasible, cv, self.population_energies[candidate], self.feasible[candidate], self.constraint_violation[candidate]): self.population[candidate] = trial self.population_energies[candidate] = energy self.feasible[candidate] = feasible self.constraint_violation[candidate] = cv # if the trial candidate is also better than the best # solution then promote it. if self._accept_trial(energy, feasible, cv, self.population_energies[0], self.feasible[0], self.constraint_violation[0]): self._promote_lowest_energy() elif self._updating == 'deferred': # update best solution once per generation if self._nfev >= self.maxfun: raise StopIteration # 'deferred' approach, vectorised form. # create trial solutions trial_pop = np.array( [self._mutate(i) for i in range(self.num_population_members)]) # enforce bounds self._ensure_constraint(trial_pop) # determine the energies of the objective function, but only for # feasible trials feasible, cv = self._calculate_population_feasibilities(trial_pop) trial_energies = np.full(self.num_population_members, np.inf) # only calculate for feasible entries trial_energies[feasible] = self._calculate_population_energies( trial_pop[feasible]) # which solutions are 'improved'? loc = [self._accept_trial(*val) for val in zip(trial_energies, feasible, cv, self.population_energies, self.feasible, self.constraint_violation)] loc = np.array(loc) self.population = np.where(loc[:, np.newaxis], trial_pop, self.population) self.population_energies = np.where(loc, trial_energies, self.population_energies) self.feasible = np.where(loc, feasible, self.feasible) self.constraint_violation = np.where(loc[:, np.newaxis], cv, self.constraint_violation) # make sure the best solution is updated if updating='deferred'. # put the lowest energy into the best solution position. self._promote_lowest_energy() return self.x, self.population_energies[0] next = __next__ def _scale_parameters(self, trial): """Scale from a number between 0 and 1 to parameters.""" return self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2 def _unscale_parameters(self, parameters): """Scale from parameters to a number between 0 and 1.""" return (parameters - self.__scale_arg1) / self.__scale_arg2 + 0.5 def _ensure_constraint(self, trial): """Make sure the parameters lie between the limits.""" mask = np.where((trial > 1) | (trial < 0)) trial[mask] = self.random_number_generator.uniform(size=mask[0].shape) def _mutate(self, candidate): """Create a trial vector based on a mutation strategy.""" trial = np.copy(self.population[candidate]) rng = self.random_number_generator fill_point = rng.choice(self.parameter_count) if self.strategy in ['currenttobest1exp', 'currenttobest1bin']: bprime = self.mutation_func(candidate, self._select_samples(candidate, 5)) else: bprime = self.mutation_func(self._select_samples(candidate, 5)) if self.strategy in self._binomial: crossovers = rng.uniform(size=self.parameter_count) crossovers = crossovers < self.cross_over_probability # the last one is always from the bprime vector for binomial # If you fill in modulo with a loop you have to set the last one to # true. If you don't use a loop then you can have any random entry # be True. crossovers[fill_point] = True trial = np.where(crossovers, bprime, trial) return trial elif self.strategy in self._exponential: i = 0 crossovers = rng.uniform(size=self.parameter_count) crossovers = crossovers < self.cross_over_probability while (i < self.parameter_count and crossovers[i]): trial[fill_point] = bprime[fill_point] fill_point = (fill_point + 1) % self.parameter_count i += 1 return trial def _best1(self, samples): """best1bin, best1exp""" r0, r1 = samples[:2] return (self.population[0] + self.scale * (self.population[r0] - self.population[r1])) def _rand1(self, samples): """rand1bin, rand1exp""" r0, r1, r2 = samples[:3] return (self.population[r0] + self.scale * (self.population[r1] - self.population[r2])) def _randtobest1(self, samples): """randtobest1bin, randtobest1exp""" r0, r1, r2 = samples[:3] bprime = np.copy(self.population[r0]) bprime += self.scale * (self.population[0] - bprime) bprime += self.scale * (self.population[r1] - self.population[r2]) return bprime def _currenttobest1(self, candidate, samples): """currenttobest1bin, currenttobest1exp""" r0, r1 = samples[:2] bprime = (self.population[candidate] + self.scale * (self.population[0] - self.population[candidate] + self.population[r0] - self.population[r1])) return bprime def _best2(self, samples): """best2bin, best2exp""" r0, r1, r2, r3 = samples[:4] bprime = (self.population[0] + self.scale * (self.population[r0] + self.population[r1] - self.population[r2] - self.population[r3])) return bprime def _rand2(self, samples): """rand2bin, rand2exp""" r0, r1, r2, r3, r4 = samples bprime = (self.population[r0] + self.scale * (self.population[r1] + self.population[r2] - self.population[r3] - self.population[r4])) return bprime def _select_samples(self, candidate, number_samples): """ obtain random integers from range(self.num_population_members), without replacement. You can't have the original candidate either. """ idxs = list(range(self.num_population_members)) idxs.remove(candidate) self.random_number_generator.shuffle(idxs) idxs = idxs[:number_samples] return idxs class _FunctionWrapper(object): """ Object to wrap user cost function, allowing picklability """ def __init__(self, f, args): self.f = f self.args = [] if args is None else args def __call__(self, x): return self.f(x, *self.args) class _ConstraintWrapper(object): """Object to wrap/evaluate user defined constraints. Very similar in practice to `PreparedConstraint`, except that no evaluation of jac/hess is performed (explicit or implicit). If created successfully, it will contain the attributes listed below. Parameters ---------- constraint : {`NonlinearConstraint`, `LinearConstraint`, `Bounds`} Constraint to check and prepare. x0 : array_like Initial vector of independent variables. Attributes ---------- fun : callable Function defining the constraint wrapped by one of the convenience classes. bounds : 2-tuple Contains lower and upper bounds for the constraints --- lb and ub. These are converted to ndarray and have a size equal to the number of the constraints. """ def __init__(self, constraint, x0): self.constraint = constraint if isinstance(constraint, NonlinearConstraint): def fun(x): return np.atleast_1d(constraint.fun(x)) elif isinstance(constraint, LinearConstraint): def fun(x): if issparse(constraint.A): A = constraint.A else: A = np.atleast_2d(constraint.A) return A.dot(x) elif isinstance(constraint, Bounds): def fun(x): return x else: raise ValueError("`constraint` of an unknown type is passed.") self.fun = fun lb = np.asarray(constraint.lb, dtype=float) ub = np.asarray(constraint.ub, dtype=float) f0 = fun(x0) m = f0.size if lb.ndim == 0: lb = np.resize(lb, m) if ub.ndim == 0: ub = np.resize(ub, m) self.bounds = (lb, ub) def __call__(self, x): return np.atleast_1d(self.fun(x)) def violation(self, x): """How much the constraint is exceeded by. Parameters ---------- x : array-like Vector of independent variables Returns ------- excess : array-like How much the constraint is exceeded by, for each of the constraints specified by `_ConstraintWrapper.fun`. """ ev = self.fun(np.asarray(x)) excess_lb = np.maximum(self.bounds[0] - ev, 0) excess_ub = np.maximum(ev - self.bounds[1], 0) return excess_lb + excess_ub