from collections import defaultdict from datetime import datetime, timedelta from io import StringIO import math import operator import re import numpy as np import pytest import pandas._config.config as cf from pandas._libs.tslib import Timestamp from pandas.compat.numpy import np_datetime64_compat from pandas.util._test_decorators import async_mark from pandas.core.dtypes.generic import ABCIndex import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Float64Index, Int64Index, PeriodIndex, RangeIndex, Series, TimedeltaIndex, UInt64Index, date_range, isna, period_range, ) import pandas._testing as tm from pandas.core.indexes.api import ( Index, MultiIndex, _get_combined_index, ensure_index, ensure_index_from_sequences, ) from pandas.tests.indexes.common import Base class TestIndex(Base): _holder = Index def create_index(self) -> Index: return Index(list("abcde")) def test_can_hold_identifiers(self): index = self.create_index() key = index[0] assert index._can_hold_identifiers_and_holds_name(key) is True @pytest.mark.parametrize("index", ["datetime"], indirect=True) def test_new_axis(self, index): with tm.assert_produces_warning(FutureWarning): # GH#30588 multi-dimensional indexing deprecated new_index = index[None, :] assert new_index.ndim == 2 assert isinstance(new_index, np.ndarray) @pytest.mark.parametrize("index", ["int", "uint", "float"], indirect=True) def test_copy_and_deepcopy(self, index): new_copy2 = index.copy(dtype=int) assert new_copy2.dtype.kind == "i" def test_constructor_regular(self, index): tm.assert_contains_all(index, index) @pytest.mark.parametrize("index", ["string"], indirect=True) def test_constructor_casting(self, index): # casting arr = np.array(index) new_index = Index(arr) tm.assert_contains_all(arr, new_index) tm.assert_index_equal(index, new_index) @pytest.mark.parametrize("index", ["string"], indirect=True) def test_constructor_copy(self, index): # copy # index = self.create_index() arr = np.array(index) new_index = Index(arr, copy=True, name="name") assert isinstance(new_index, Index) assert new_index.name == "name" tm.assert_numpy_array_equal(arr, new_index.values) arr[0] = "SOMEBIGLONGSTRING" assert new_index[0] != "SOMEBIGLONGSTRING" # FIXME: dont leave commented-out # what to do here? # arr = np.array(5.) # pytest.raises(Exception, arr.view, Index) @pytest.mark.parametrize("cast_as_obj", [True, False]) @pytest.mark.parametrize( "index", [ pd.date_range( "2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern", name="Green Eggs & Ham", ), # DTI with tz pd.date_range("2015-01-01 10:00", freq="D", periods=3), # DTI no tz pd.timedelta_range("1 days", freq="D", periods=3), # td pd.period_range("2015-01-01", freq="D", periods=3), # period ], ) def test_constructor_from_index_dtlike(self, cast_as_obj, index): if cast_as_obj: result = pd.Index(index.astype(object)) else: result = pd.Index(index) tm.assert_index_equal(result, index) if isinstance(index, pd.DatetimeIndex): assert result.tz == index.tz if cast_as_obj: # GH#23524 check that Index(dti, dtype=object) does not # incorrectly raise ValueError, and that nanoseconds are not # dropped index += pd.Timedelta(nanoseconds=50) result = pd.Index(index, dtype=object) assert result.dtype == np.object_ assert list(result) == list(index) @pytest.mark.parametrize( "index,has_tz", [ ( pd.date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern"), True, ), # datetimetz (pd.timedelta_range("1 days", freq="D", periods=3), False), # td (pd.period_range("2015-01-01", freq="D", periods=3), False), # period ], ) def test_constructor_from_series_dtlike(self, index, has_tz): result = pd.Index(pd.Series(index)) tm.assert_index_equal(result, index) if has_tz: assert result.tz == index.tz def test_constructor_from_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"] expected = DatetimeIndex(dts, freq="MS") s = Series(pd.to_datetime(dts)) result = DatetimeIndex(s, freq="MS") tm.assert_index_equal(result, expected) def test_constructor_from_frame_series_freq(self): # GH 6273 # create from a series, passing a freq dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"] expected = DatetimeIndex(dts, freq="MS") df = pd.DataFrame(np.random.rand(5, 3)) df["date"] = dts result = DatetimeIndex(df["date"], freq="MS") assert df["date"].dtype == object expected.name = "date" tm.assert_index_equal(result, expected) expected = pd.Series(dts, name="date") tm.assert_series_equal(df["date"], expected) # GH 6274 # infer freq of same freq = pd.infer_freq(df["date"]) assert freq == "MS" @pytest.mark.parametrize( "array", [ np.arange(5), np.array(["a", "b", "c"]), date_range("2000-01-01", periods=3).values, ], ) def test_constructor_ndarray_like(self, array): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike: def __init__(self, array): self.array = array def __array__(self, dtype=None) -> np.ndarray: return self.array expected = pd.Index(array) result = pd.Index(ArrayLike(array)) tm.assert_index_equal(result, expected) def test_constructor_int_dtype_nan(self): # see gh-15187 data = [np.nan] expected = Float64Index(data) result = Index(data, dtype="float") tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dtype", ["int64", "uint64"]) def test_constructor_int_dtype_nan_raises(self, dtype): # see gh-15187 data = [np.nan] msg = "cannot convert" with pytest.raises(ValueError, match=msg): Index(data, dtype=dtype) def test_constructor_no_pandas_array(self): ser = pd.Series([1, 2, 3]) result = pd.Index(ser.array) expected = pd.Index([1, 2, 3]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "klass,dtype,na_val", [ (pd.Float64Index, np.float64, np.nan), (pd.DatetimeIndex, "datetime64[ns]", pd.NaT), ], ) def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val): # GH 13467 na_list = [na_val, na_val] expected = klass(na_list) assert expected.dtype == dtype result = Index(na_list) tm.assert_index_equal(result, expected) result = Index(np.array(na_list)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "vals,dtype", [ ([1, 2, 3, 4, 5], "int"), ([1.1, np.nan, 2.2, 3.0], "float"), (["A", "B", "C", np.nan], "obj"), ], ) def test_constructor_simple_new(self, vals, dtype): index = Index(vals, name=dtype) result = index._simple_new(index.values, dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize( "vals", [ [1, 2, 3], np.array([1, 2, 3]), np.array([1, 2, 3], dtype=int), # below should coerce [1.0, 2.0, 3.0], np.array([1.0, 2.0, 3.0], dtype=float), ], ) def test_constructor_dtypes_to_int64(self, vals): index = Index(vals, dtype=int) assert isinstance(index, Int64Index) @pytest.mark.parametrize( "vals", [ [1, 2, 3], [1.0, 2.0, 3.0], np.array([1.0, 2.0, 3.0]), np.array([1, 2, 3], dtype=int), np.array([1.0, 2.0, 3.0], dtype=float), ], ) def test_constructor_dtypes_to_float64(self, vals): index = Index(vals, dtype=float) assert isinstance(index, Float64Index) @pytest.mark.parametrize( "vals", [ [1, 2, 3], np.array([1, 2, 3], dtype=int), np.array( [np_datetime64_compat("2011-01-01"), np_datetime64_compat("2011-01-02")] ), [datetime(2011, 1, 1), datetime(2011, 1, 2)], ], ) def test_constructor_dtypes_to_categorical(self, vals): index = Index(vals, dtype="category") assert isinstance(index, CategoricalIndex) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize( "vals", [ Index( np.array( [ np_datetime64_compat("2011-01-01"), np_datetime64_compat("2011-01-02"), ] ) ), Index([datetime(2011, 1, 1), datetime(2011, 1, 2)]), ], ) def test_constructor_dtypes_to_datetime(self, cast_index, vals): if cast_index: index = Index(vals, dtype=object) assert isinstance(index, Index) assert index.dtype == object else: index = Index(vals) assert isinstance(index, DatetimeIndex) @pytest.mark.parametrize("cast_index", [True, False]) @pytest.mark.parametrize( "vals", [ np.array([np.timedelta64(1, "D"), np.timedelta64(1, "D")]), [timedelta(1), timedelta(1)], ], ) def test_constructor_dtypes_to_timedelta(self, cast_index, vals): if cast_index: index = Index(vals, dtype=object) assert isinstance(index, Index) assert index.dtype == object else: index = Index(vals) assert isinstance(index, TimedeltaIndex) @pytest.mark.parametrize("attr", ["values", "asi8"]) @pytest.mark.parametrize("klass", [pd.Index, pd.DatetimeIndex]) def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, klass): # Test constructing with a datetimetz dtype # .values produces numpy datetimes, so these are considered naive # .asi8 produces integers, so these are considered epoch timestamps # ^the above will be true in a later version. Right now we `.view` # the i8 values as NS_DTYPE, effectively treating them as wall times. index = pd.date_range("2011-01-01", periods=5) arg = getattr(index, attr) index = index.tz_localize(tz_naive_fixture) dtype = index.dtype if attr == "asi8": result = pd.DatetimeIndex(arg).tz_localize(tz_naive_fixture) else: result = klass(arg, tz=tz_naive_fixture) tm.assert_index_equal(result, index) if attr == "asi8": result = pd.DatetimeIndex(arg).astype(dtype) else: result = klass(arg, dtype=dtype) tm.assert_index_equal(result, index) if attr == "asi8": result = pd.DatetimeIndex(list(arg)).tz_localize(tz_naive_fixture) else: result = klass(list(arg), tz=tz_naive_fixture) tm.assert_index_equal(result, index) if attr == "asi8": result = pd.DatetimeIndex(list(arg)).astype(dtype) else: result = klass(list(arg), dtype=dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("attr", ["values", "asi8"]) @pytest.mark.parametrize("klass", [pd.Index, pd.TimedeltaIndex]) def test_constructor_dtypes_timedelta(self, attr, klass): index = pd.timedelta_range("1 days", periods=5) index = index._with_freq(None) # wont be preserved by constructors dtype = index.dtype values = getattr(index, attr) result = klass(values, dtype=dtype) tm.assert_index_equal(result, index) result = klass(list(values), dtype=dtype) tm.assert_index_equal(result, index) @pytest.mark.parametrize("value", [[], iter([]), (_ for _ in [])]) @pytest.mark.parametrize( "klass", [ Index, Float64Index, Int64Index, UInt64Index, CategoricalIndex, DatetimeIndex, TimedeltaIndex, ], ) def test_constructor_empty(self, value, klass): empty = klass(value) assert isinstance(empty, klass) assert not len(empty) @pytest.mark.parametrize( "empty,klass", [ (PeriodIndex([], freq="B"), PeriodIndex), (PeriodIndex(iter([]), freq="B"), PeriodIndex), (PeriodIndex((_ for _ in []), freq="B"), PeriodIndex), (RangeIndex(step=1), pd.RangeIndex), (MultiIndex(levels=[[1, 2], ["blue", "red"]], codes=[[], []]), MultiIndex), ], ) def test_constructor_empty_special(self, empty, klass): assert isinstance(empty, klass) assert not len(empty) def test_constructor_overflow_int64(self): # see gh-15832 msg = ( "The elements provided in the data cannot " "all be casted to the dtype int64" ) with pytest.raises(OverflowError, match=msg): Index([np.iinfo(np.uint64).max - 1], dtype="int64") @pytest.mark.parametrize( "index", [ "datetime", "float", "int", "period", "range", "repeats", "timedelta", "tuples", "uint", ], indirect=True, ) def test_view_with_args(self, index): index.view("i8") @pytest.mark.parametrize( "index", [ "unicode", "string", pytest.param("categorical", marks=pytest.mark.xfail(reason="gh-25464")), "bool", "empty", ], indirect=True, ) def test_view_with_args_object_array_raises(self, index): msg = "Cannot change data-type for object array" with pytest.raises(TypeError, match=msg): index.view("i8") @pytest.mark.parametrize("index", ["int", "range"], indirect=True) def test_astype(self, index): casted = index.astype("i8") # it works! casted.get_loc(5) # pass on name index.name = "foobar" casted = index.astype("i8") assert casted.name == "foobar" def test_equals_object(self): # same assert Index(["a", "b", "c"]).equals(Index(["a", "b", "c"])) @pytest.mark.parametrize( "comp", [Index(["a", "b"]), Index(["a", "b", "d"]), ["a", "b", "c"]] ) def test_not_equals_object(self, comp): assert not Index(["a", "b", "c"]).equals(comp) def test_insert_missing(self, nulls_fixture): # GH 22295 # test there is no mangling of NA values expected = Index(["a", nulls_fixture, "b", "c"]) result = Index(list("abc")).insert(1, nulls_fixture) tm.assert_index_equal(result, expected) def test_delete_raises(self): index = Index(["a", "b", "c", "d"], name="index") msg = "index 5 is out of bounds for axis 0 with size 4" with pytest.raises(IndexError, match=msg): index.delete(5) def test_identical(self): # index i1 = Index(["a", "b", "c"]) i2 = Index(["a", "b", "c"]) assert i1.identical(i2) i1 = i1.rename("foo") assert i1.equals(i2) assert not i1.identical(i2) i2 = i2.rename("foo") assert i1.identical(i2) i3 = Index([("a", "a"), ("a", "b"), ("b", "a")]) i4 = Index([("a", "a"), ("a", "b"), ("b", "a")], tupleize_cols=False) assert not i3.identical(i4) def test_is_(self): ind = Index(range(10)) assert ind.is_(ind) assert ind.is_(ind.view().view().view().view()) assert not ind.is_(Index(range(10))) assert not ind.is_(ind.copy()) assert not ind.is_(ind.copy(deep=False)) assert not ind.is_(ind[:]) assert not ind.is_(np.array(range(10))) # quasi-implementation dependent assert ind.is_(ind.view()) ind2 = ind.view() ind2.name = "bob" assert ind.is_(ind2) assert ind2.is_(ind) # doesn't matter if Indices are *actually* views of underlying data, assert not ind.is_(Index(ind.values)) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) assert not ind1.is_(ind2) @pytest.mark.parametrize("index", ["datetime"], indirect=True) def test_asof(self, index): d = index[0] assert index.asof(d) == d assert isna(index.asof(d - timedelta(1))) d = index[-1] assert index.asof(d + timedelta(1)) == d d = index[0].to_pydatetime() assert isinstance(index.asof(d), Timestamp) def test_asof_datetime_partial(self): index = pd.date_range("2010-01-01", periods=2, freq="m") expected = Timestamp("2010-02-28") result = index.asof("2010-02") assert result == expected assert not isinstance(result, Index) def test_nanosecond_index_access(self): s = Series([Timestamp("20130101")]).values.view("i8")[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil # assert first_value == x['2013-01-01 00:00:00.000000050+0000'] expected_ts = np_datetime64_compat("2013-01-01 00:00:00.000000050+0000", "ns") assert first_value == x[Timestamp(expected_ts)] @pytest.mark.parametrize("index", ["string"], indirect=True) def test_booleanindex(self, index): bool_index = np.ones(len(index), dtype=bool) bool_index[5:30:2] = False sub_index = index[bool_index] for i, val in enumerate(sub_index): assert sub_index.get_loc(val) == i sub_index = index[list(bool_index)] for i, val in enumerate(sub_index): assert sub_index.get_loc(val) == i def test_fancy(self): index = self.create_index() sl = index[[1, 2, 3]] for i in sl: assert i == sl[sl.get_loc(i)] @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) @pytest.mark.parametrize("dtype", [np.int_, np.bool_]) def test_empty_fancy(self, index, dtype): empty_arr = np.array([], dtype=dtype) empty_index = type(index)([]) assert index[[]].identical(empty_index) assert index[empty_arr].identical(empty_index) @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) def test_empty_fancy_raises(self, index): # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. empty_farr = np.array([], dtype=np.float_) empty_index = type(index)([]) assert index[[]].identical(empty_index) # np.ndarray only accepts ndarray of int & bool dtypes, so should Index msg = r"arrays used as indices must be of integer \(or boolean\) type" with pytest.raises(IndexError, match=msg): index[empty_farr] @pytest.mark.parametrize("index", ["string"], indirect=True) def test_intersection(self, index, sort): first = index[:20] second = index[:10] intersect = first.intersection(second, sort=sort) if sort is None: tm.assert_index_equal(intersect, second.sort_values()) assert tm.equalContents(intersect, second) # Corner cases inter = first.intersection(first, sort=sort) assert inter is first @pytest.mark.parametrize( "index2,keeps_name", [ (Index([3, 4, 5, 6, 7], name="index"), True), # preserve same name (Index([3, 4, 5, 6, 7], name="other"), False), # drop diff names (Index([3, 4, 5, 6, 7]), False), ], ) def test_intersection_name_preservation(self, index2, keeps_name, sort): index1 = Index([1, 2, 3, 4, 5], name="index") expected = Index([3, 4, 5]) result = index1.intersection(index2, sort) if keeps_name: expected.name = "index" assert result.name == expected.name tm.assert_index_equal(result, expected) @pytest.mark.parametrize("index", ["string"], indirect=True) @pytest.mark.parametrize( "first_name,second_name,expected_name", [("A", "A", "A"), ("A", "B", None), (None, "B", None)], ) def test_intersection_name_preservation2( self, index, first_name, second_name, expected_name, sort ): first = index[5:20] second = index[:10] first.name = first_name second.name = second_name intersect = first.intersection(second, sort=sort) assert intersect.name == expected_name @pytest.mark.parametrize( "index2,keeps_name", [ (Index([4, 7, 6, 5, 3], name="index"), True), (Index([4, 7, 6, 5, 3], name="other"), False), ], ) def test_intersection_monotonic(self, index2, keeps_name, sort): index1 = Index([5, 3, 2, 4, 1], name="index") expected = Index([5, 3, 4]) if keeps_name: expected.name = "index" result = index1.intersection(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "index2,expected_arr", [(Index(["B", "D"]), ["B"]), (Index(["B", "D", "A"]), ["A", "B", "A"])], ) def test_intersection_non_monotonic_non_unique(self, index2, expected_arr, sort): # non-monotonic non-unique index1 = Index(["A", "B", "A", "C"]) expected = Index(expected_arr, dtype="object") result = index1.intersection(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) def test_intersect_str_dates(self, sort): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] i1 = Index(dt_dates, dtype=object) i2 = Index(["aa"], dtype=object) result = i2.intersection(i1, sort=sort) assert len(result) == 0 @pytest.mark.xfail(reason="Not implemented") def test_intersection_equal_sort_true(self): # TODO decide on True behaviour idx = pd.Index(["c", "a", "b"]) sorted_ = pd.Index(["a", "b", "c"]) tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_) def test_chained_union(self, sort): # Chained unions handles names correctly i1 = Index([1, 2], name="i1") i2 = Index([5, 6], name="i2") i3 = Index([3, 4], name="i3") union = i1.union(i2.union(i3, sort=sort), sort=sort) expected = i1.union(i2, sort=sort).union(i3, sort=sort) tm.assert_index_equal(union, expected) j1 = Index([1, 2], name="j1") j2 = Index([], name="j2") j3 = Index([], name="j3") union = j1.union(j2.union(j3, sort=sort), sort=sort) expected = j1.union(j2, sort=sort).union(j3, sort=sort) tm.assert_index_equal(union, expected) @pytest.mark.parametrize("index", ["string"], indirect=True) def test_union(self, index, sort): first = index[5:20] second = index[:10] everything = index[:20] union = first.union(second, sort=sort) if sort is None: tm.assert_index_equal(union, everything.sort_values()) assert tm.equalContents(union, everything) @pytest.mark.parametrize("slice_", [slice(None), slice(0)]) def test_union_sort_other_special(self, slice_): # https://github.com/pandas-dev/pandas/issues/24959 idx = pd.Index([1, 0, 2]) # default, sort=None other = idx[slice_] tm.assert_index_equal(idx.union(other), idx) tm.assert_index_equal(other.union(idx), idx) # sort=False tm.assert_index_equal(idx.union(other, sort=False), idx) @pytest.mark.xfail(reason="Not implemented") @pytest.mark.parametrize("slice_", [slice(None), slice(0)]) def test_union_sort_special_true(self, slice_): # TODO decide on True behaviour # sort=True idx = pd.Index([1, 0, 2]) # default, sort=None other = idx[slice_] result = idx.union(other, sort=True) expected = pd.Index([0, 1, 2]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("klass", [np.array, Series, list]) @pytest.mark.parametrize("index", ["string"], indirect=True) def test_union_from_iterables(self, index, klass, sort): # GH 10149 first = index[5:20] second = index[:10] everything = index[:20] case = klass(second.values) result = first.union(case, sort=sort) if sort is None: tm.assert_index_equal(result, everything.sort_values()) assert tm.equalContents(result, everything) @pytest.mark.parametrize("index", ["string"], indirect=True) def test_union_identity(self, index, sort): first = index[5:20] union = first.union(first, sort=sort) # i.e. identity is not preserved when sort is True assert (union is first) is (not sort) # This should no longer be the same object, since [] is not consistent, # both objects will be recast to dtype('O') union = first.union([], sort=sort) assert (union is first) is (not sort) union = Index([]).union(first, sort=sort) assert (union is first) is (not sort) @pytest.mark.parametrize("first_list", [list("ba"), list()]) @pytest.mark.parametrize("second_list", [list("ab"), list()]) @pytest.mark.parametrize( "first_name, second_name, expected_name", [("A", "B", None), (None, "B", None), ("A", None, None)], ) def test_union_name_preservation( self, first_list, second_list, first_name, second_name, expected_name, sort ): first = Index(first_list, name=first_name) second = Index(second_list, name=second_name) union = first.union(second, sort=sort) vals = set(first_list).union(second_list) if sort is None and len(first_list) > 0 and len(second_list) > 0: expected = Index(sorted(vals), name=expected_name) tm.assert_index_equal(union, expected) else: expected = Index(vals, name=expected_name) assert tm.equalContents(union, expected) def test_union_dt_as_obj(self, sort): # TODO: Replace with fixturesult index = self.create_index() date_index = pd.date_range("2019-01-01", periods=10) first_cat = index.union(date_index) second_cat = index.union(index) if date_index.dtype == np.object_: appended = np.append(index, date_index) else: appended = np.append(index, date_index.astype("O")) assert tm.equalContents(first_cat, appended) assert tm.equalContents(second_cat, index) tm.assert_contains_all(index, first_cat) tm.assert_contains_all(index, second_cat) tm.assert_contains_all(date_index, first_cat) def test_map_identity_mapping(self, index): # GH 12766 tm.assert_index_equal(index, index.map(lambda x: x)) def test_map_with_tuples(self): # GH 12766 # Test that returning a single tuple from an Index # returns an Index. index = tm.makeIntIndex(3) result = tm.makeIntIndex(3).map(lambda x: (x,)) expected = Index([(i,) for i in index]) tm.assert_index_equal(result, expected) # Test that returning a tuple from a map of a single index # returns a MultiIndex object. result = index.map(lambda x: (x, x == 1)) expected = MultiIndex.from_tuples([(i, i == 1) for i in index]) tm.assert_index_equal(result, expected) def test_map_with_tuples_mi(self): # Test that returning a single object from a MultiIndex # returns an Index. first_level = ["foo", "bar", "baz"] multi_index = MultiIndex.from_tuples(zip(first_level, [1, 2, 3])) reduced_index = multi_index.map(lambda x: x[0]) tm.assert_index_equal(reduced_index, Index(first_level)) @pytest.mark.parametrize( "attr", ["makeDateIndex", "makePeriodIndex", "makeTimedeltaIndex"] ) def test_map_tseries_indices_return_index(self, attr): index = getattr(tm, attr)(10) expected = Index([1] * 10) result = index.map(lambda x: 1) tm.assert_index_equal(expected, result) def test_map_tseries_indices_accsr_return_index(self): date_index = tm.makeDateIndex(24, freq="h", name="hourly") expected = Index(range(24), name="hourly") tm.assert_index_equal(expected, date_index.map(lambda x: x.hour)) @pytest.mark.parametrize( "mapper", [ lambda values, index: {i: e for e, i in zip(values, index)}, lambda values, index: pd.Series(values, index), ], ) def test_map_dictlike_simple(self, mapper): # GH 12756 expected = Index(["foo", "bar", "baz"]) index = tm.makeIntIndex(3) result = index.map(mapper(expected.values, index)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "mapper", [ lambda values, index: {i: e for e, i in zip(values, index)}, lambda values, index: pd.Series(values, index), ], ) def test_map_dictlike(self, index, mapper): # GH 12756 if isinstance(index, CategoricalIndex): # Tested in test_categorical return elif not index.is_unique: # Cannot map duplicated index return if index.empty: # to match proper result coercion for uints expected = Index([]) else: expected = Index(np.arange(len(index), 0, -1)) result = index.map(mapper(expected, index)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "mapper", [Series(["foo", 2.0, "baz"], index=[0, 2, -1]), {0: "foo", 2: 2.0, -1: "baz"}], ) def test_map_with_non_function_missing_values(self, mapper): # GH 12756 expected = Index([2.0, np.nan, "foo"]) result = Index([2, 1, 0]).map(mapper) tm.assert_index_equal(expected, result) def test_map_na_exclusion(self): index = Index([1.5, np.nan, 3, np.nan, 5]) result = index.map(lambda x: x * 2, na_action="ignore") expected = index * 2 tm.assert_index_equal(result, expected) def test_map_defaultdict(self): index = Index([1, 2, 3]) default_dict = defaultdict(lambda: "blank") default_dict[1] = "stuff" result = index.map(default_dict) expected = Index(["stuff", "blank", "blank"]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("name,expected", [("foo", "foo"), ("bar", None)]) def test_append_empty_preserve_name(self, name, expected): left = Index([], name="foo") right = Index([1, 2, 3], name=name) result = left.append(right) assert result.name == expected @pytest.mark.parametrize("index", ["string"], indirect=True) @pytest.mark.parametrize("second_name,expected", [(None, None), ("name", "name")]) def test_difference_name_preservation(self, index, second_name, expected, sort): first = index[5:20] second = index[:10] answer = index[10:20] first.name = "name" second.name = second_name result = first.difference(second, sort=sort) assert tm.equalContents(result, answer) if expected is None: assert result.name is None else: assert result.name == expected @pytest.mark.parametrize("index", ["string"], indirect=True) def test_difference_empty_arg(self, index, sort): first = index[5:20] first.name = "name" result = first.difference([], sort) assert tm.equalContents(result, first) assert result.name == first.name @pytest.mark.parametrize("index", ["string"], indirect=True) def test_difference_identity(self, index, sort): first = index[5:20] first.name = "name" result = first.difference(first, sort) assert len(result) == 0 assert result.name == first.name @pytest.mark.parametrize("index", ["string"], indirect=True) def test_difference_sort(self, index, sort): first = index[5:20] second = index[:10] result = first.difference(second, sort) expected = index[10:20] if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) def test_symmetric_difference(self, sort): # smoke index1 = Index([5, 2, 3, 4], name="index1") index2 = Index([2, 3, 4, 1]) result = index1.symmetric_difference(index2, sort=sort) expected = Index([5, 1]) assert tm.equalContents(result, expected) assert result.name is None if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) # __xor__ syntax expected = index1 ^ index2 assert tm.equalContents(result, expected) assert result.name is None @pytest.mark.parametrize("opname", ["difference", "symmetric_difference"]) def test_difference_incomparable(self, opname): a = pd.Index([3, pd.Timestamp("2000"), 1]) b = pd.Index([2, pd.Timestamp("1999"), 1]) op = operator.methodcaller(opname, b) # sort=None, the default result = op(a) expected = pd.Index([3, pd.Timestamp("2000"), 2, pd.Timestamp("1999")]) if opname == "difference": expected = expected[:2] tm.assert_index_equal(result, expected) # sort=False op = operator.methodcaller(opname, b, sort=False) result = op(a) tm.assert_index_equal(result, expected) @pytest.mark.xfail(reason="Not implemented") @pytest.mark.parametrize("opname", ["difference", "symmetric_difference"]) def test_difference_incomparable_true(self, opname): # TODO decide on True behaviour # # sort=True, raises a = pd.Index([3, pd.Timestamp("2000"), 1]) b = pd.Index([2, pd.Timestamp("1999"), 1]) op = operator.methodcaller(opname, b, sort=True) with pytest.raises(TypeError, match="Cannot compare"): op(a) def test_symmetric_difference_mi(self, sort): index1 = MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])) index2 = MultiIndex.from_tuples([("foo", 1), ("bar", 3)]) result = index1.symmetric_difference(index2, sort=sort) expected = MultiIndex.from_tuples([("bar", 2), ("baz", 3), ("bar", 3)]) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) assert tm.equalContents(result, expected) @pytest.mark.parametrize( "index2,expected", [ (Index([0, 1, np.nan]), Index([2.0, 3.0, 0.0])), (Index([0, 1]), Index([np.nan, 2.0, 3.0, 0.0])), ], ) def test_symmetric_difference_missing(self, index2, expected, sort): # GH 13514 change: {nan} - {nan} == {} # (GH 6444, sorting of nans, is no longer an issue) index1 = Index([1, np.nan, 2, 3]) result = index1.symmetric_difference(index2, sort=sort) if sort is None: expected = expected.sort_values() tm.assert_index_equal(result, expected) def test_symmetric_difference_non_index(self, sort): index1 = Index([1, 2, 3, 4], name="index1") index2 = np.array([2, 3, 4, 5]) expected = Index([1, 5]) result = index1.symmetric_difference(index2, sort=sort) assert tm.equalContents(result, expected) assert result.name == "index1" result = index1.symmetric_difference(index2, result_name="new_name", sort=sort) assert tm.equalContents(result, expected) assert result.name == "new_name" def test_difference_type(self, index, sort): # GH 20040 # If taking difference of a set and itself, it # needs to preserve the type of the index if not index.is_unique: return result = index.difference(index, sort=sort) expected = index.drop(index) tm.assert_index_equal(result, expected) def test_intersection_difference(self, index, sort): # GH 20040 # Test that the intersection of an index with an # empty index produces the same index as the difference # of an index with itself. Test for all types if not index.is_unique: return inter = index.intersection(index.drop(index)) diff = index.difference(index, sort=sort) tm.assert_index_equal(inter, diff) def test_is_mixed_deprecated(self): # GH#32922 index = self.create_index() with tm.assert_produces_warning(FutureWarning): index.is_mixed() @pytest.mark.parametrize( "index, expected", [ ("string", False), ("bool", False), ("categorical", False), ("int", True), ("datetime", False), ("float", True), ], indirect=["index"], ) def test_is_numeric(self, index, expected): assert index.is_numeric() is expected @pytest.mark.parametrize( "index, expected", [ ("string", True), ("bool", True), ("categorical", False), ("int", False), ("datetime", False), ("float", False), ], indirect=["index"], ) def test_is_object(self, index, expected): assert index.is_object() is expected @pytest.mark.parametrize( "index, expected", [ ("string", False), ("bool", False), ("categorical", False), ("int", False), ("datetime", True), ("float", False), ], indirect=["index"], ) def test_is_all_dates(self, index, expected): assert index.is_all_dates is expected def test_summary(self, index): self._check_method_works(Index._summary, index) def test_summary_bug(self): # GH3869` ind = Index(["{other}%s", "~:{range}:0"], name="A") result = ind._summary() # shouldn't be formatted accidentally. assert "~:{range}:0" in result assert "{other}%s" in result def test_format_different_scalar_lengths(self): # GH35439 idx = Index(["aaaaaaaaa", "b"]) expected = ["aaaaaaaaa", "b"] assert idx.format() == expected def test_format_bug(self): # GH 14626 # windows has different precision on datetime.datetime.now (it doesn't # include us since the default for Timestamp shows these but Index # formatting does not we are skipping) now = datetime.now() if not str(now).endswith("000"): index = Index([now]) formatted = index.format() expected = [str(index[0])] assert formatted == expected Index([]).format() @pytest.mark.parametrize("vals", [[1, 2.0 + 3.0j, 4.0], ["a", "b", "c"]]) def test_format_missing(self, vals, nulls_fixture): # 2845 vals = list(vals) # Copy for each iteration vals.append(nulls_fixture) index = Index(vals) formatted = index.format() expected = [str(index[0]), str(index[1]), str(index[2]), "NaN"] assert formatted == expected assert index[3] is nulls_fixture def test_format_with_name_time_info(self): # bug I fixed 12/20/2011 dates = date_range("2011-01-01 04:00:00", periods=10, name="something") formatted = dates.format(name=True) assert formatted[0] == "something" def test_format_datetime_with_time(self): t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)]) result = t.format() expected = ["2012-02-07 00:00:00", "2012-02-07 23:00:00"] assert len(result) == 2 assert result == expected @pytest.mark.parametrize("op", ["any", "all"]) def test_logical_compat(self, op): index = self.create_index() assert getattr(index, op)() == getattr(index.values, op)() def _check_method_works(self, method, index): method(index) def test_get_indexer(self): index1 = Index([1, 2, 3, 4, 5]) index2 = Index([2, 4, 6]) r1 = index1.get_indexer(index2) e1 = np.array([1, 3, -1], dtype=np.intp) tm.assert_almost_equal(r1, e1) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize( "expected,method", [ (np.array([-1, 0, 0, 1, 1], dtype=np.intp), "pad"), (np.array([-1, 0, 0, 1, 1], dtype=np.intp), "ffill"), (np.array([0, 0, 1, 1, 2], dtype=np.intp), "backfill"), (np.array([0, 0, 1, 1, 2], dtype=np.intp), "bfill"), ], ) def test_get_indexer_methods(self, reverse, expected, method): index1 = Index([1, 2, 3, 4, 5]) index2 = Index([2, 4, 6]) if reverse: index1 = index1[::-1] expected = expected[::-1] result = index2.get_indexer(index1, method=method) tm.assert_almost_equal(result, expected) def test_get_indexer_invalid(self): # GH10411 index = Index(np.arange(10)) with pytest.raises(ValueError, match="tolerance argument"): index.get_indexer([1, 0], tolerance=1) with pytest.raises(ValueError, match="limit argument"): index.get_indexer([1, 0], limit=1) @pytest.mark.parametrize( "method, tolerance, indexer, expected", [ ("pad", None, [0, 5, 9], [0, 5, 9]), ("backfill", None, [0, 5, 9], [0, 5, 9]), ("nearest", None, [0, 5, 9], [0, 5, 9]), ("pad", 0, [0, 5, 9], [0, 5, 9]), ("backfill", 0, [0, 5, 9], [0, 5, 9]), ("nearest", 0, [0, 5, 9], [0, 5, 9]), ("pad", None, [0.2, 1.8, 8.5], [0, 1, 8]), ("backfill", None, [0.2, 1.8, 8.5], [1, 2, 9]), ("nearest", None, [0.2, 1.8, 8.5], [0, 2, 9]), ("pad", 1, [0.2, 1.8, 8.5], [0, 1, 8]), ("backfill", 1, [0.2, 1.8, 8.5], [1, 2, 9]), ("nearest", 1, [0.2, 1.8, 8.5], [0, 2, 9]), ("pad", 0.2, [0.2, 1.8, 8.5], [0, -1, -1]), ("backfill", 0.2, [0.2, 1.8, 8.5], [-1, 2, -1]), ("nearest", 0.2, [0.2, 1.8, 8.5], [0, 2, -1]), ], ) def test_get_indexer_nearest(self, method, tolerance, indexer, expected): index = Index(np.arange(10)) actual = index.get_indexer(indexer, method=method, tolerance=tolerance) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) @pytest.mark.parametrize("listtype", [list, tuple, Series, np.array]) @pytest.mark.parametrize( "tolerance, expected", list( zip( [[0.3, 0.3, 0.1], [0.2, 0.1, 0.1], [0.1, 0.5, 0.5]], [[0, 2, -1], [0, -1, -1], [-1, 2, 9]], ) ), ) def test_get_indexer_nearest_listlike_tolerance( self, tolerance, expected, listtype ): index = Index(np.arange(10)) actual = index.get_indexer( [0.2, 1.8, 8.5], method="nearest", tolerance=listtype(tolerance) ) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) def test_get_indexer_nearest_error(self): index = Index(np.arange(10)) with pytest.raises(ValueError, match="limit argument"): index.get_indexer([1, 0], method="nearest", limit=1) with pytest.raises(ValueError, match="tolerance size must match"): index.get_indexer([1, 0], method="nearest", tolerance=[1, 2, 3]) @pytest.mark.parametrize( "method,expected", [("pad", [8, 7, 0]), ("backfill", [9, 8, 1]), ("nearest", [9, 7, 0])], ) def test_get_indexer_nearest_decreasing(self, method, expected): index = Index(np.arange(10))[::-1] actual = index.get_indexer([0, 5, 9], method=method) tm.assert_numpy_array_equal(actual, np.array([9, 4, 0], dtype=np.intp)) actual = index.get_indexer([0.2, 1.8, 8.5], method=method) tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp)) @pytest.mark.parametrize( "method,expected", [ ("pad", np.array([-1, 0, 1, 1], dtype=np.intp)), ("backfill", np.array([0, 0, 1, -1], dtype=np.intp)), ], ) def test_get_indexer_strings(self, method, expected): index = pd.Index(["b", "c"]) actual = index.get_indexer(["a", "b", "c", "d"], method=method) tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_strings_raises(self): index = pd.Index(["b", "c"]) msg = r"unsupported operand type\(s\) for -: 'str' and 'str'" with pytest.raises(TypeError, match=msg): index.get_indexer(["a", "b", "c", "d"], method="nearest") with pytest.raises(TypeError, match=msg): index.get_indexer(["a", "b", "c", "d"], method="pad", tolerance=2) with pytest.raises(TypeError, match=msg): index.get_indexer( ["a", "b", "c", "d"], method="pad", tolerance=[2, 2, 2, 2] ) @pytest.mark.parametrize("idx_class", [Int64Index, RangeIndex, Float64Index]) def test_get_indexer_numeric_index_boolean_target(self, idx_class): # GH 16877 numeric_index = idx_class(RangeIndex((4))) result = numeric_index.get_indexer([True, False, True]) expected = np.array([-1, -1, -1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) def test_get_indexer_with_NA_values( self, unique_nulls_fixture, unique_nulls_fixture2 ): # GH 22332 # check pairwise, that no pair of na values # is mangled if unique_nulls_fixture is unique_nulls_fixture2: return # skip it, values are not unique arr = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=object) index = pd.Index(arr, dtype=object) result = index.get_indexer( [unique_nulls_fixture, unique_nulls_fixture2, "Unknown"] ) expected = np.array([0, 1, -1], dtype=np.intp) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("method", [None, "pad", "backfill", "nearest"]) def test_get_loc(self, method): index = pd.Index([0, 1, 2]) assert index.get_loc(1, method=method) == 1 if method: assert index.get_loc(1, method=method, tolerance=0) == 1 @pytest.mark.parametrize("method", [None, "pad", "backfill", "nearest"]) def test_get_loc_raises_bad_label(self, method): index = pd.Index([0, 1, 2]) if method: msg = "not supported between" else: msg = "invalid key" with pytest.raises(TypeError, match=msg): index.get_loc([1, 2], method=method) @pytest.mark.parametrize( "method,loc", [("pad", 1), ("backfill", 2), ("nearest", 1)] ) def test_get_loc_tolerance(self, method, loc): index = pd.Index([0, 1, 2]) assert index.get_loc(1.1, method) == loc assert index.get_loc(1.1, method, tolerance=1) == loc @pytest.mark.parametrize("method", ["pad", "backfill", "nearest"]) def test_get_loc_outside_tolerance_raises(self, method): index = pd.Index([0, 1, 2]) with pytest.raises(KeyError, match="1.1"): index.get_loc(1.1, method, tolerance=0.05) def test_get_loc_bad_tolerance_raises(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match="must be numeric"): index.get_loc(1.1, "nearest", tolerance="invalid") def test_get_loc_tolerance_no_method_raises(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match="tolerance .* valid if"): index.get_loc(1.1, tolerance=1) def test_get_loc_raises_missized_tolerance(self): index = pd.Index([0, 1, 2]) with pytest.raises(ValueError, match="tolerance size must match"): index.get_loc(1.1, "nearest", tolerance=[1, 1]) def test_get_loc_raises_object_nearest(self): index = pd.Index(["a", "c"]) with pytest.raises(TypeError, match="unsupported operand type"): index.get_loc("a", method="nearest") def test_get_loc_raises_object_tolerance(self): index = pd.Index(["a", "c"]) with pytest.raises(TypeError, match="unsupported operand type"): index.get_loc("a", method="pad", tolerance="invalid") @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs(self, dtype): index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(index) assert index.slice_locs(start=2) == (2, n) assert index.slice_locs(start=3) == (3, n) assert index.slice_locs(3, 8) == (3, 6) assert index.slice_locs(5, 10) == (3, n) assert index.slice_locs(end=8) == (0, 6) assert index.slice_locs(end=9) == (0, 7) # reversed index2 = index[::-1] assert index2.slice_locs(8, 2) == (2, 6) assert index2.slice_locs(7, 3) == (2, 5) @pytest.mark.parametrize("dtype", [int, float]) def test_slice_float_locs(self, dtype): index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype)) n = len(index) assert index.slice_locs(5.0, 10.0) == (3, n) assert index.slice_locs(4.5, 10.5) == (3, 8) index2 = index[::-1] assert index2.slice_locs(8.5, 1.5) == (2, 6) assert index2.slice_locs(10.5, -1) == (0, n) def test_slice_locs_dup(self): index = Index(["a", "a", "b", "c", "d", "d"]) assert index.slice_locs("a", "d") == (0, 6) assert index.slice_locs(end="d") == (0, 6) assert index.slice_locs("a", "c") == (0, 4) assert index.slice_locs("b", "d") == (2, 6) index2 = index[::-1] assert index2.slice_locs("d", "a") == (0, 6) assert index2.slice_locs(end="a") == (0, 6) assert index2.slice_locs("d", "b") == (0, 4) assert index2.slice_locs("c", "a") == (2, 6) @pytest.mark.parametrize("dtype", [int, float]) def test_slice_locs_dup_numeric(self, dtype): index = Index(np.array([10, 12, 12, 14], dtype=dtype)) assert index.slice_locs(12, 12) == (1, 3) assert index.slice_locs(11, 13) == (1, 3) index2 = index[::-1] assert index2.slice_locs(12, 12) == (1, 3) assert index2.slice_locs(13, 11) == (1, 3) def test_slice_locs_na(self): index = Index([np.nan, 1, 2]) assert index.slice_locs(1) == (1, 3) assert index.slice_locs(np.nan) == (0, 3) index = Index([0, np.nan, np.nan, 1, 2]) assert index.slice_locs(np.nan) == (1, 5) def test_slice_locs_na_raises(self): index = Index([np.nan, 1, 2]) with pytest.raises(KeyError, match=""): index.slice_locs(start=1.5) with pytest.raises(KeyError, match=""): index.slice_locs(end=1.5) @pytest.mark.parametrize( "in_slice,expected", [ (pd.IndexSlice[::-1], "yxdcb"), (pd.IndexSlice["b":"y":-1], ""), # type: ignore (pd.IndexSlice["b"::-1], "b"), # type: ignore (pd.IndexSlice[:"b":-1], "yxdcb"), # type: ignore (pd.IndexSlice[:"y":-1], "y"), # type: ignore (pd.IndexSlice["y"::-1], "yxdcb"), # type: ignore (pd.IndexSlice["y"::-4], "yb"), # type: ignore # absent labels (pd.IndexSlice[:"a":-1], "yxdcb"), # type: ignore (pd.IndexSlice[:"a":-2], "ydb"), # type: ignore (pd.IndexSlice["z"::-1], "yxdcb"), # type: ignore (pd.IndexSlice["z"::-3], "yc"), # type: ignore (pd.IndexSlice["m"::-1], "dcb"), # type: ignore (pd.IndexSlice[:"m":-1], "yx"), # type: ignore (pd.IndexSlice["a":"a":-1], ""), # type: ignore (pd.IndexSlice["z":"z":-1], ""), # type: ignore (pd.IndexSlice["m":"m":-1], ""), # type: ignore ], ) def test_slice_locs_negative_step(self, in_slice, expected): index = Index(list("bcdxy")) s_start, s_stop = index.slice_locs(in_slice.start, in_slice.stop, in_slice.step) result = index[s_start : s_stop : in_slice.step] expected = pd.Index(list(expected)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) def test_drop_by_str_label(self, index): n = len(index) drop = index[list(range(5, 10))] dropped = index.drop(drop) expected = index[list(range(5)) + list(range(10, n))] tm.assert_index_equal(dropped, expected) dropped = index.drop(index[0]) expected = index[1:] tm.assert_index_equal(dropped, expected) @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) @pytest.mark.parametrize("keys", [["foo", "bar"], ["1", "bar"]]) def test_drop_by_str_label_raises_missing_keys(self, index, keys): with pytest.raises(KeyError, match=""): index.drop(keys) @pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True) def test_drop_by_str_label_errors_ignore(self, index): n = len(index) drop = index[list(range(5, 10))] mixed = drop.tolist() + ["foo"] dropped = index.drop(mixed, errors="ignore") expected = index[list(range(5)) + list(range(10, n))] tm.assert_index_equal(dropped, expected) dropped = index.drop(["foo", "bar"], errors="ignore") expected = index[list(range(n))] tm.assert_index_equal(dropped, expected) def test_drop_by_numeric_label_loc(self): # TODO: Parametrize numeric and str tests after self.strIndex fixture index = Index([1, 2, 3]) dropped = index.drop(1) expected = Index([2, 3]) tm.assert_index_equal(dropped, expected) def test_drop_by_numeric_label_raises_missing_keys(self): index = Index([1, 2, 3]) with pytest.raises(KeyError, match=""): index.drop([3, 4]) @pytest.mark.parametrize( "key,expected", [(4, Index([1, 2, 3])), ([3, 4, 5], Index([1, 2]))] ) def test_drop_by_numeric_label_errors_ignore(self, key, expected): index = Index([1, 2, 3]) dropped = index.drop(key, errors="ignore") tm.assert_index_equal(dropped, expected) @pytest.mark.parametrize( "values", [["a", "b", ("c", "d")], ["a", ("c", "d"), "b"], [("c", "d"), "a", "b"]], ) @pytest.mark.parametrize("to_drop", [[("c", "d"), "a"], ["a", ("c", "d")]]) def test_drop_tuple(self, values, to_drop): # GH 18304 index = pd.Index(values) expected = pd.Index(["b"]) result = index.drop(to_drop) tm.assert_index_equal(result, expected) removed = index.drop(to_drop[0]) for drop_me in to_drop[1], [to_drop[1]]: result = removed.drop(drop_me) tm.assert_index_equal(result, expected) removed = index.drop(to_drop[1]) msg = fr"\"\[{re.escape(to_drop[1].__repr__())}\] not found in axis\"" for drop_me in to_drop[1], [to_drop[1]]: with pytest.raises(KeyError, match=msg): removed.drop(drop_me) @pytest.mark.parametrize( "method,expected,sort", [ ( "intersection", np.array( [(1, "A"), (2, "A"), (1, "B"), (2, "B")], dtype=[("num", int), ("let", "a1")], ), False, ), ( "intersection", np.array( [(1, "A"), (1, "B"), (2, "A"), (2, "B")], dtype=[("num", int), ("let", "a1")], ), None, ), ( "union", np.array( [(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")], dtype=[("num", int), ("let", "a1")], ), None, ), ], ) def test_tuple_union_bug(self, method, expected, sort): index1 = Index( np.array( [(1, "A"), (2, "A"), (1, "B"), (2, "B")], dtype=[("num", int), ("let", "a1")], ) ) index2 = Index( np.array( [(1, "A"), (2, "A"), (1, "B"), (2, "B"), (1, "C"), (2, "C")], dtype=[("num", int), ("let", "a1")], ) ) result = getattr(index1, method)(index2, sort=sort) assert result.ndim == 1 expected = Index(expected) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "attr", [ "is_monotonic_increasing", "is_monotonic_decreasing", "_is_strictly_monotonic_increasing", "_is_strictly_monotonic_decreasing", ], ) def test_is_monotonic_incomparable(self, attr): index = Index([5, datetime.now(), 7]) assert not getattr(index, attr) def test_set_value_deprecated(self): # GH 28621 idx = self.create_index() arr = np.array([1, 2, 3]) with tm.assert_produces_warning(FutureWarning): idx.set_value(arr, idx[1], 80) assert arr[1] == 80 @pytest.mark.parametrize( "index", ["string", "int", "datetime", "timedelta"], indirect=True ) def test_get_value(self, index): # TODO: Remove function? GH 19728 values = np.random.randn(100) value = index[67] with pytest.raises(AttributeError, match="has no attribute '_values'"): # Index.get_value requires a Series, not an ndarray with tm.assert_produces_warning(FutureWarning): index.get_value(values, value) with tm.assert_produces_warning(FutureWarning): result = index.get_value(Series(values, index=values), value) tm.assert_almost_equal(result, values[67]) @pytest.mark.parametrize("values", [["foo", "bar", "quux"], {"foo", "bar", "quux"}]) @pytest.mark.parametrize( "index,expected", [ (Index(["qux", "baz", "foo", "bar"]), np.array([False, False, True, True])), (Index([]), np.array([], dtype=bool)), # empty ], ) def test_isin(self, values, index, expected): result = index.isin(values) tm.assert_numpy_array_equal(result, expected) def test_isin_nan_common_object(self, nulls_fixture, nulls_fixture2): # Test cartesian product of null fixtures and ensure that we don't # mangle the various types (save a corner case with PyPy) # all nans are the same if ( isinstance(nulls_fixture, float) and isinstance(nulls_fixture2, float) and math.isnan(nulls_fixture) and math.isnan(nulls_fixture2) ): tm.assert_numpy_array_equal( Index(["a", nulls_fixture]).isin([nulls_fixture2]), np.array([False, True]), ) elif nulls_fixture is nulls_fixture2: # should preserve NA type tm.assert_numpy_array_equal( Index(["a", nulls_fixture]).isin([nulls_fixture2]), np.array([False, True]), ) else: tm.assert_numpy_array_equal( Index(["a", nulls_fixture]).isin([nulls_fixture2]), np.array([False, False]), ) def test_isin_nan_common_float64(self, nulls_fixture): if nulls_fixture is pd.NaT: pytest.skip("pd.NaT not compatible with Float64Index") # Float64Index overrides isin, so must be checked separately if nulls_fixture is pd.NA: pytest.xfail("Float64Index cannot contain pd.NA") tm.assert_numpy_array_equal( Float64Index([1.0, nulls_fixture]).isin([np.nan]), np.array([False, True]) ) # we cannot compare NaT with NaN tm.assert_numpy_array_equal( Float64Index([1.0, nulls_fixture]).isin([pd.NaT]), np.array([False, False]) ) @pytest.mark.parametrize("level", [0, -1]) @pytest.mark.parametrize( "index", [ Index(["qux", "baz", "foo", "bar"]), # Float64Index overrides isin, so must be checked separately Float64Index([1.0, 2.0, 3.0, 4.0]), ], ) def test_isin_level_kwarg(self, level, index): values = index.tolist()[-2:] + ["nonexisting"] expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(expected, index.isin(values, level=level)) index.name = "foobar" tm.assert_numpy_array_equal(expected, index.isin(values, level="foobar")) def test_isin_level_kwarg_bad_level_raises(self, index): for level in [10, index.nlevels, -(index.nlevels + 1)]: with pytest.raises(IndexError, match="Too many levels"): index.isin([], level=level) @pytest.mark.parametrize("label", [1.0, "foobar", "xyzzy", np.nan]) def test_isin_level_kwarg_bad_label_raises(self, label, index): if isinstance(index, MultiIndex): index = index.rename(["foo", "bar"] + index.names[2:]) msg = f"'Level {label} not found'" else: index = index.rename("foo") msg = fr"Requested level \({label}\) does not match index name \(foo\)" with pytest.raises(KeyError, match=msg): index.isin([], level=label) @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])]) def test_isin_empty(self, empty): # see gh-16991 index = Index(["a", "b"]) expected = np.array([False, False]) result = index.isin(empty) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize( "values", [ [1, 2, 3, 4], [1.0, 2.0, 3.0, 4.0], [True, True, True, True], ["foo", "bar", "baz", "qux"], pd.date_range("2018-01-01", freq="D", periods=4), ], ) def test_boolean_cmp(self, values): index = Index(values) result = index == values expected = np.array([True, True, True, True], dtype=bool) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("index", ["string"], indirect=True) @pytest.mark.parametrize("name,level", [(None, 0), ("a", "a")]) def test_get_level_values(self, index, name, level): expected = index.copy() if name: expected.name = name result = expected.get_level_values(level) tm.assert_index_equal(result, expected) def test_slice_keep_name(self): index = Index(["a", "b"], name="asdf") assert index.name == index[1:].name @pytest.mark.parametrize( "index", ["unicode", "string", "datetime", "int", "uint", "float"], indirect=True, ) def test_join_self(self, index, join_type): joined = index.join(index, how=join_type) assert index is joined @pytest.mark.parametrize("method", ["strip", "rstrip", "lstrip"]) def test_str_attribute(self, method): # GH9068 index = Index([" jack", "jill ", " jesse ", "frank"]) expected = Index([getattr(str, method)(x) for x in index.values]) result = getattr(index.str, method)() tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "index", [ Index(range(5)), tm.makeDateIndex(10), MultiIndex.from_tuples([("foo", "1"), ("bar", "3")]), period_range(start="2000", end="2010", freq="A"), ], ) def test_str_attribute_raises(self, index): with pytest.raises(AttributeError, match="only use .str accessor"): index.str.repeat(2) @pytest.mark.parametrize( "expand,expected", [ (None, Index([["a", "b", "c"], ["d", "e"], ["f"]])), (False, Index([["a", "b", "c"], ["d", "e"], ["f"]])), ( True, MultiIndex.from_tuples( [("a", "b", "c"), ("d", "e", np.nan), ("f", np.nan, np.nan)] ), ), ], ) def test_str_split(self, expand, expected): index = Index(["a b c", "d e", "f"]) if expand is not None: result = index.str.split(expand=expand) else: result = index.str.split() tm.assert_index_equal(result, expected) def test_str_bool_return(self): # test boolean case, should return np.array instead of boolean Index index = Index(["a1", "a2", "b1", "b2"]) result = index.str.startswith("a") expected = np.array([True, True, False, False]) tm.assert_numpy_array_equal(result, expected) assert isinstance(result, np.ndarray) def test_str_bool_series_indexing(self): index = Index(["a1", "a2", "b1", "b2"]) s = Series(range(4), index=index) result = s[s.index.str.startswith("a")] expected = Series(range(2), index=["a1", "a2"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "index,expected", [(Index(list("abcd")), True), (Index(range(4)), False)] ) def test_tab_completion(self, index, expected): # GH 9910 result = "str" in dir(index) assert result == expected def test_indexing_doesnt_change_class(self): index = Index([1, 2, 3, "a", "b", "c"]) assert index[1:3].identical(pd.Index([2, 3], dtype=np.object_)) assert index[[0, 1]].identical(pd.Index([1, 2], dtype=np.object_)) def test_outer_join_sort(self): left_index = Index(np.random.permutation(15)) right_index = tm.makeDateIndex(10) with tm.assert_produces_warning(RuntimeWarning): result = left_index.join(right_index, how="outer") # right_index in this case because DatetimeIndex has join precedence # over Int64Index with tm.assert_produces_warning(RuntimeWarning): expected = right_index.astype(object).union(left_index.astype(object)) tm.assert_index_equal(result, expected) def test_nan_first_take_datetime(self): index = Index([pd.NaT, Timestamp("20130101"), Timestamp("20130102")]) result = index.take([-1, 0, 1]) expected = Index([index[-1], index[0], index[1]]) tm.assert_index_equal(result, expected) def test_take_fill_value(self): # GH 12631 index = pd.Index(list("ABC"), name="xxx") result = index.take(np.array([1, 0, -1])) expected = pd.Index(list("BAC"), name="xxx") tm.assert_index_equal(result, expected) # fill_value result = index.take(np.array([1, 0, -1]), fill_value=True) expected = pd.Index(["B", "A", np.nan], name="xxx") tm.assert_index_equal(result, expected) # allow_fill=False result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.Index(["B", "A", "C"], name="xxx") tm.assert_index_equal(result, expected) def test_take_fill_value_none_raises(self): index = pd.Index(list("ABC"), name="xxx") msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) with pytest.raises(ValueError, match=msg): index.take(np.array([1, 0, -2]), fill_value=True) with pytest.raises(ValueError, match=msg): index.take(np.array([1, 0, -5]), fill_value=True) def test_take_bad_bounds_raises(self): index = pd.Index(list("ABC"), name="xxx") with pytest.raises(IndexError, match="out of bounds"): index.take(np.array([1, -5])) @pytest.mark.parametrize("name", [None, "foobar"]) @pytest.mark.parametrize( "labels", [ [], np.array([]), ["A", "B", "C"], ["C", "B", "A"], np.array(["A", "B", "C"]), np.array(["C", "B", "A"]), # Must preserve name even if dtype changes pd.date_range("20130101", periods=3).values, pd.date_range("20130101", periods=3).tolist(), ], ) def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels): # GH6552 index = pd.Index([0, 1, 2]) index.name = name assert index.reindex(labels)[0].name == name @pytest.mark.parametrize("labels", [[], np.array([]), np.array([], dtype=np.int64)]) def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels): # GH7774 index = pd.Index(list("abc")) assert index.reindex(labels)[0].dtype.type == np.object_ @pytest.mark.parametrize( "labels,dtype", [ (pd.Int64Index([]), np.int64), (pd.Float64Index([]), np.float64), (pd.DatetimeIndex([]), np.datetime64), ], ) def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype): # GH7774 index = pd.Index(list("abc")) assert index.reindex(labels)[0].dtype.type == dtype def test_reindex_no_type_preserve_target_empty_mi(self): index = pd.Index(list("abc")) result = index.reindex( pd.MultiIndex([pd.Int64Index([]), pd.Float64Index([])], [[], []]) )[0] assert result.levels[0].dtype.type == np.int64 assert result.levels[1].dtype.type == np.float64 def test_groupby(self): index = Index(range(5)) result = index.groupby(np.array([1, 1, 2, 2, 2])) expected = {1: pd.Index([0, 1]), 2: pd.Index([2, 3, 4])} tm.assert_dict_equal(result, expected) @pytest.mark.parametrize( "mi,expected", [ (MultiIndex.from_tuples([(1, 2), (4, 5)]), np.array([True, True])), (MultiIndex.from_tuples([(1, 2), (4, 6)]), np.array([True, False])), ], ) def test_equals_op_multiindex(self, mi, expected): # GH9785 # test comparisons of multiindex df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1]) result = df.index == mi tm.assert_numpy_array_equal(result, expected) def test_equals_op_multiindex_identify(self): df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1]) result = df.index == df.index expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "index", [ MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]), Index(["foo", "bar", "baz"]), ], ) def test_equals_op_mismatched_multiindex_raises(self, index): df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1]) with pytest.raises(ValueError, match="Lengths must match"): df.index == index def test_equals_op_index_vs_mi_same_length(self): mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]) index = Index(["foo", "bar", "baz"]) result = mi == index expected = np.array([False, False, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dt_conv", [pd.to_datetime, pd.to_timedelta]) def test_dt_conversion_preserves_name(self, dt_conv): # GH 10875 index = pd.Index(["01:02:03", "01:02:04"], name="label") assert index.name == dt_conv(index).name @pytest.mark.parametrize( "index,expected", [ # ASCII # short ( pd.Index(["a", "bb", "ccc"]), """Index(['a', 'bb', 'ccc'], dtype='object')""", ), # multiple lines ( pd.Index(["a", "bb", "ccc"] * 10), """\ Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], dtype='object')""", ), # truncated ( pd.Index(["a", "bb", "ccc"] * 100), """\ Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', ... 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'], dtype='object', length=300)""", ), # Non-ASCII # short ( pd.Index(["あ", "いい", "ううう"]), """Index(['あ', 'いい', 'ううう'], dtype='object')""", ), # multiple lines ( pd.Index(["あ", "いい", "ううう"] * 10), ( "Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " "'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " "'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう'],\n" " dtype='object')" ), ), # truncated ( pd.Index(["あ", "いい", "ううう"] * 100), ( "Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', " "'あ', 'いい', 'ううう', 'あ',\n" " ...\n" " 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう'],\n" " dtype='object', length=300)" ), ), ], ) def test_string_index_repr(self, index, expected): result = repr(index) assert result == expected @pytest.mark.parametrize( "index,expected", [ # short ( pd.Index(["あ", "いい", "ううう"]), ("Index(['あ', 'いい', 'ううう'], dtype='object')"), ), # multiple lines ( pd.Index(["あ", "いい", "ううう"] * 10), ( "Index(['あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう',\n" " 'あ', 'いい', 'ううう'],\n" " dtype='object')" "" ), ), # truncated ( pd.Index(["あ", "いい", "ううう"] * 100), ( "Index(['あ', 'いい', 'ううう', 'あ', 'いい', " "'ううう', 'あ', 'いい', 'ううう',\n" " 'あ',\n" " ...\n" " 'ううう', 'あ', 'いい', 'ううう', 'あ', " "'いい', 'ううう', 'あ', 'いい',\n" " 'ううう'],\n" " dtype='object', length=300)" ), ), ], ) def test_string_index_repr_with_unicode_option(self, index, expected): # Enable Unicode option ----------------------------------------- with cf.option_context("display.unicode.east_asian_width", True): result = repr(index) assert result == expected def test_cached_properties_not_settable(self): index = pd.Index([1, 2, 3]) with pytest.raises(AttributeError, match="Can't set attribute"): index.is_unique = False @async_mark() async def test_tab_complete_warning(self, ip): # https://github.com/pandas-dev/pandas/issues/16409 pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.completer import provisionalcompleter code = "import pandas as pd; idx = pd.Index([1, 2])" await ip.run_code(code) # GH 31324 newer jedi version raises Deprecation warning import jedi if jedi.__version__ < "0.16.0": warning = tm.assert_produces_warning(None) else: warning = tm.assert_produces_warning( DeprecationWarning, check_stacklevel=False ) with warning: with provisionalcompleter("ignore"): list(ip.Completer.completions("idx.", 4)) def test_contains_method_removed(self, index): # GH#30103 method removed for all types except IntervalIndex if isinstance(index, pd.IntervalIndex): index.contains(1) else: msg = f"'{type(index).__name__}' object has no attribute 'contains'" with pytest.raises(AttributeError, match=msg): index.contains(1) class TestMixedIntIndex(Base): # Mostly the tests from common.py for which the results differ # in py2 and py3 because ints and strings are uncomparable in py3 # (GH 13514) _holder = Index @pytest.fixture(params=[[0, "a", 1, "b", 2, "c"]], ids=["mixedIndex"]) def index(self, request): return Index(request.param) def create_index(self) -> Index: return Index([0, "a", 1, "b", 2, "c"]) def test_argsort(self): index = self.create_index() with pytest.raises(TypeError, match="'>|<' not supported"): index.argsort() def test_numpy_argsort(self): index = self.create_index() with pytest.raises(TypeError, match="'>|<' not supported"): np.argsort(index) def test_copy_name(self): # Check that "name" argument passed at initialization is honoured # GH12309 index = self.create_index() first = type(index)(index, copy=True, name="mario") second = type(first)(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second tm.assert_index_equal(first, second) assert first.name == "mario" assert second.name == "mario" s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) s3 = s1 * s2 assert s3.index.name == "mario" def test_copy_name2(self): # Check that adding a "name" parameter to the copy is honored # GH14302 index = pd.Index([1, 2], name="MyName") index1 = index.copy() tm.assert_index_equal(index, index1) index2 = index.copy(name="NewName") tm.assert_index_equal(index, index2, check_names=False) assert index.name == "MyName" assert index2.name == "NewName" index3 = index.copy(names=["NewName"]) tm.assert_index_equal(index, index3, check_names=False) assert index.name == "MyName" assert index.names == ["MyName"] assert index3.name == "NewName" assert index3.names == ["NewName"] def test_unique_na(self): idx = pd.Index([2, np.nan, 2, 1], name="my_index") expected = pd.Index([2, np.nan, 1], name="my_index") result = idx.unique() tm.assert_index_equal(result, expected) def test_logical_compat(self): index = self.create_index() assert index.all() == index.values.all() assert index.any() == index.values.any() @pytest.mark.parametrize("how", ["any", "all"]) @pytest.mark.parametrize("dtype", [None, object, "category"]) @pytest.mark.parametrize( "vals,expected", [ ([1, 2, 3], [1, 2, 3]), ([1.0, 2.0, 3.0], [1.0, 2.0, 3.0]), ([1.0, 2.0, np.nan, 3.0], [1.0, 2.0, 3.0]), (["A", "B", "C"], ["A", "B", "C"]), (["A", np.nan, "B", "C"], ["A", "B", "C"]), ], ) def test_dropna(self, how, dtype, vals, expected): # GH 6194 index = pd.Index(vals, dtype=dtype) result = index.dropna(how=how) expected = pd.Index(expected, dtype=dtype) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("how", ["any", "all"]) @pytest.mark.parametrize( "index,expected", [ ( pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]), pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]), ), ( pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03", pd.NaT]), pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]), ), ( pd.TimedeltaIndex(["1 days", "2 days", "3 days"]), pd.TimedeltaIndex(["1 days", "2 days", "3 days"]), ), ( pd.TimedeltaIndex([pd.NaT, "1 days", "2 days", "3 days", pd.NaT]), pd.TimedeltaIndex(["1 days", "2 days", "3 days"]), ), ( pd.PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"), pd.PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"), ), ( pd.PeriodIndex(["2012-02", "2012-04", "NaT", "2012-05"], freq="M"), pd.PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"), ), ], ) def test_dropna_dt_like(self, how, index, expected): result = index.dropna(how=how) tm.assert_index_equal(result, expected) def test_dropna_invalid_how_raises(self): msg = "invalid how option: xxx" with pytest.raises(ValueError, match=msg): pd.Index([1, 2, 3]).dropna(how="xxx") def test_get_combined_index(self): result = _get_combined_index([]) expected = Index([]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "index", [ pd.Index([np.nan]), pd.Index([np.nan, 1]), pd.Index([1, 2, np.nan]), pd.Index(["a", "b", np.nan]), pd.to_datetime(["NaT"]), pd.to_datetime(["NaT", "2000-01-01"]), pd.to_datetime(["2000-01-01", "NaT", "2000-01-02"]), pd.to_timedelta(["1 day", "NaT"]), ], ) def test_is_monotonic_na(self, index): assert index.is_monotonic_increasing is False assert index.is_monotonic_decreasing is False assert index._is_strictly_monotonic_increasing is False assert index._is_strictly_monotonic_decreasing is False def test_repr_summary(self): with cf.option_context("display.max_seq_items", 10): result = repr(pd.Index(np.arange(1000))) assert len(result) < 200 assert "..." in result @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_int_name_format(self, klass): index = Index(["a", "b", "c"], name=0) result = klass(list(range(3)), index=index) assert "0" in repr(result) def test_str_to_bytes_raises(self): # GH 26447 index = Index([str(x) for x in range(10)]) msg = "^'str' object cannot be interpreted as an integer$" with pytest.raises(TypeError, match=msg): bytes(index) def test_intersect_str_dates(self): dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)] index1 = Index(dt_dates, dtype=object) index2 = Index(["aa"], dtype=object) result = index2.intersection(index1) expected = Index([], dtype=object) tm.assert_index_equal(result, expected) def test_index_repr_bool_nan(self): # GH32146 arr = Index([True, False, np.nan], dtype=object) exp1 = arr.format() out1 = ["True", "False", "NaN"] assert out1 == exp1 exp2 = repr(arr) out2 = "Index([True, False, nan], dtype='object')" assert out2 == exp2 @pytest.mark.filterwarnings("ignore:elementwise comparison failed:FutureWarning") def test_index_with_tuple_bool(self): # GH34123 # TODO: remove tupleize_cols=False once correct behaviour is restored # TODO: also this op right now produces FutureWarning from numpy idx = Index([("a", "b"), ("b", "c"), ("c", "a")], tupleize_cols=False) result = idx == ("c", "a",) expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) class TestIndexUtils: @pytest.mark.parametrize( "data, names, expected", [ ([[1, 2, 3]], None, Index([1, 2, 3])), ([[1, 2, 3]], ["name"], Index([1, 2, 3], name="name")), ( [["a", "a"], ["c", "d"]], None, MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]]), ), ( [["a", "a"], ["c", "d"]], ["L1", "L2"], MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]], names=["L1", "L2"]), ), ], ) def test_ensure_index_from_sequences(self, data, names, expected): result = ensure_index_from_sequences(data, names) tm.assert_index_equal(result, expected) def test_ensure_index_mixed_closed_intervals(self): # GH27172 intervals = [ pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right"), pd.Interval(2, 3, closed="neither"), pd.Interval(3, 4, closed="both"), ] result = ensure_index(intervals) expected = Index(intervals, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "opname", [ "eq", "ne", "le", "lt", "ge", "gt", "add", "radd", "sub", "rsub", "mul", "rmul", "truediv", "rtruediv", "floordiv", "rfloordiv", "pow", "rpow", "mod", "divmod", ], ) def test_generated_op_names(opname, index): if isinstance(index, ABCIndex) and opname == "rsub": # pd.Index.__rsub__ does not exist; though the method does exist # for subclasses. see GH#19723 return opname = f"__{opname}__" method = getattr(index, opname) assert method.__name__ == opname @pytest.mark.parametrize("index_maker", tm.index_subclass_makers_generator()) def test_index_subclass_constructor_wrong_kwargs(index_maker): # GH #19348 with pytest.raises(TypeError, match="unexpected keyword argument"): index_maker(foo="bar") def test_deprecated_fastpath(): msg = "[Uu]nexpected keyword argument" with pytest.raises(TypeError, match=msg): pd.Index(np.array(["a", "b"], dtype=object), name="test", fastpath=True) with pytest.raises(TypeError, match=msg): pd.Int64Index(np.array([1, 2, 3], dtype="int64"), name="test", fastpath=True) with pytest.raises(TypeError, match=msg): pd.RangeIndex(0, 5, 2, name="test", fastpath=True) with pytest.raises(TypeError, match=msg): pd.CategoricalIndex(["a", "b", "c"], name="test", fastpath=True) def test_shape_of_invalid_index(): # Currently, it is possible to create "invalid" index objects backed by # a multi-dimensional array (see https://github.com/pandas-dev/pandas/issues/27125 # about this). However, as long as this is not solved in general,this test ensures # that the returned shape is consistent with this underlying array for # compat with matplotlib (see https://github.com/pandas-dev/pandas/issues/27775) idx = pd.Index([0, 1, 2, 3]) with tm.assert_produces_warning(FutureWarning): # GH#30588 multi-dimensional indexing deprecated assert idx[:, None].shape == (4, 1) def test_validate_1d_input(): # GH#27125 check that we do not have >1-dimensional input msg = "Index data must be 1-dimensional" arr = np.arange(8).reshape(2, 2, 2) with pytest.raises(ValueError, match=msg): pd.Index(arr) with pytest.raises(ValueError, match=msg): pd.Float64Index(arr.astype(np.float64)) with pytest.raises(ValueError, match=msg): pd.Int64Index(arr.astype(np.int64)) with pytest.raises(ValueError, match=msg): pd.UInt64Index(arr.astype(np.uint64)) df = pd.DataFrame(arr.reshape(4, 2)) with pytest.raises(ValueError, match=msg): pd.Index(df) # GH#13601 trying to assign a multi-dimensional array to an index is not # allowed ser = pd.Series(0, range(4)) with pytest.raises(ValueError, match=msg): ser.index = np.array([[2, 3]] * 4) def test_convert_almost_null_slice(index): # slice with None at both ends, but not step key = slice(None, None, "foo") if isinstance(index, pd.IntervalIndex): msg = "label-based slicing with step!=1 is not supported for IntervalIndex" with pytest.raises(ValueError, match=msg): index._convert_slice_indexer(key, "loc") else: msg = "'>=' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): index._convert_slice_indexer(key, "loc") dtlike_dtypes = [ np.dtype("timedelta64[ns]"), np.dtype("datetime64[ns]"), pd.DatetimeTZDtype("ns", "Asia/Tokyo"), pd.PeriodDtype("ns"), ] @pytest.mark.parametrize("ldtype", dtlike_dtypes) @pytest.mark.parametrize("rdtype", dtlike_dtypes) def test_get_indexer_non_unique_wrong_dtype(ldtype, rdtype): vals = np.tile(3600 * 10 ** 9 * np.arange(3), 2) def construct(dtype): if dtype is dtlike_dtypes[-1]: # PeriodArray will try to cast ints to strings return pd.DatetimeIndex(vals).astype(dtype) return pd.Index(vals, dtype=dtype) left = construct(ldtype) right = construct(rdtype) result = left.get_indexer_non_unique(right) if ldtype is rdtype: ex1 = np.array([0, 3, 1, 4, 2, 5] * 2, dtype=np.intp) ex2 = np.array([], dtype=np.intp) tm.assert_numpy_array_equal(result[0], ex1) tm.assert_numpy_array_equal(result[1], ex2.astype(np.int64)) else: no_matches = np.array([-1] * 6, dtype=np.intp) tm.assert_numpy_array_equal(result[0], no_matches) tm.assert_numpy_array_equal(result[1], no_matches)