import pandas as pd import glob import os import typing from PyCTBN.classes.abstract_importer import AbstractImporter from PyCTBN.classes.sample_path import SamplePath class CSVImporter(AbstractImporter): def __init__(self, file_path): self._df_samples_list = None super(CSVImporter, self).__init__(file_path) def import_data(self): self.read_csv_file() self._sorter = self.build_sorter(self._df_samples_list[0]) self.import_variables() self.import_structure() self.compute_row_delta_in_all_samples_frames(self._df_samples_list) def read_csv_file(self): df = pd.read_csv(self._file_path) df.drop(df.columns[[0]], axis=1, inplace=True) self._df_samples_list = [df] def import_variables(self): values_list = [3 for var in self._sorter] # initialize dict of lists data = {'Name':self._sorter, 'Value':values_list} # Create the pandas DataFrame self._df_variables = pd.DataFrame(data) def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List: return list(sample_frame.columns)[1:] def import_structure(self): data = {'From':['X','Y','Z'], 'To':['Z','Z','Y']} self._df_structure = pd.DataFrame(data) def dataset_id(self) -> object: pass def main(): read_files = glob.glob(os.path.join('../data', "*.csv")) print(read_files[0]) csvimp = CSVImporter(read_files[0]) csvimp.import_data() s1 = SamplePath(csvimp) s1.build_trajectories() s1.build_structure() print(s1.structure) print(s1.trajectories) if __name__ == "__main__": main()