import pandas as pd import json import typing from abstract_importer import AbstractImporter class JsonImporter(AbstractImporter): """ Implements the Interface AbstractImporter and adds all the necessary methods to process and prepare the data in json ext. with the following structure: [] 0 |_ dyn.cims |_ dyn.str |_ samples |_ variabels :file_path: the path of the file that contains tha data to be imported :samples_label: the reference key for the samples in the trajectories :structure_label: the reference key for the structure of the network data :variables_label: the reference key for the cardinalites of the nodes data :time_key: the key used to identify the timestamps in each trajectory :variables_key: the key used to identify the names of the variables in the net :df_samples_list: a Dataframe list in which every df contains a trajectory :df_structure: Dataframe containing the structure of the network (edges) :df_variables: Dataframe containing the nodes cardinalities :df_concatenated_samples: the concatenation and processing of all the trajectories present in the list df_samples list :sorter: the columns header(excluding the time column) of the Dataframe concatenated_samples """ def __init__(self, file_path: str, samples_label: str, structure_label: str, variables_label: str, time_key: str, variables_key: str): self.samples_label = samples_label self.structure_label = structure_label self.variables_label = variables_label self.time_key = time_key self.variables_key = variables_key self.df_samples_list = [] self._df_structure = pd.DataFrame() self._df_variables = pd.DataFrame() self._concatenated_samples = None self.sorter = None super(JsonImporter, self).__init__(file_path) def import_data(self): """ Imports and prepares all data present needed for susequent computation. Parameters: void Returns: void """ raw_data = self.read_json_file() self.import_trajectories(raw_data) self.compute_row_delta_in_all_samples_frames(self.time_key) self.clear_data_frame_list() self.import_structure(raw_data) self.import_variables(raw_data, self.sorter) def import_trajectories(self, raw_data: typing.List): """ Imports the trajectories in the list of dicts raw_data. Parameters: :raw_data: List of Dicts Returns: void """ self.normalize_trajectories(raw_data, 0, self.samples_label) def import_structure(self, raw_data: typing.List): """ Imports in a dataframe the data in the list raw_data at the key structure_label Parameters: raw_data: the data Returns: void """ self._df_structure = self.one_level_normalizing(raw_data, 0, self.structure_label) def import_variables(self, raw_data: typing.List, sorter: typing.List): """ Imports the data in raw_data at the key variables_label. Sorts the row of the dataframe df_variables using the list sorter. Parameters: raw_data: the data sorter: the list used to sort the dataframe self.df_variables Returns: void """ self._df_variables = self.one_level_normalizing(raw_data, 0, self.variables_label) #self.sorter = self._df_variables[self.variables_key].to_list() #self.sorter.sort() #print("Sorter:", self.sorter) self._df_variables[self.variables_key] = self._df_variables[self.variables_key].astype("category") self._df_variables[self.variables_key] = self._df_variables[self.variables_key].cat.set_categories(self.sorter) self._df_variables = self._df_variables.sort_values([self.variables_key]) self._df_variables.reset_index(inplace=True) print("Var Frame", self._df_variables) def read_json_file(self) -> typing.List: """ Reads the first json file in the path self.filePath Parameters: void Returns: data: the contents of the json file """ #try: #read_files = glob.glob(os.path.join(self.files_path, "*.json")) #if not read_files: #raise ValueError('No .json file found in the entered path!') with open(self.file_path) as f: data = json.load(f) return data #except ValueError as err: #print(err.args) def one_level_normalizing(self, raw_data: typing.List, indx: int, key: str) -> pd.DataFrame: """ Extracts the one-level nested data in the list raw_data at the index indx at the key key Parameters: raw_data: List of Dicts indx: The index of the array from which the data have to be extracted key: the key for the Dicts from which exctract data Returns: a normalized dataframe """ return pd.DataFrame(raw_data[indx][key]) def normalize_trajectories(self, raw_data: typing.List, indx: int, trajectories_key: str): """ Extracts the traj in raw_data at the index index at the key trajectories key. Adds the extracted traj in the dataframe list self._df_samples_list. Initializes the list self.sorter. Parameters: raw_data: the data indx: the index of the array from which extract data trajectories_key: the key of the trajectories objects Returns: void """ dataframe = pd.DataFrame smps = raw_data[indx][trajectories_key] self.df_samples_list = [dataframe(sample) for sample in smps] columns_header = list(self.df_samples_list[0].columns.values) columns_header.remove(self.time_key) self.sorter = columns_header def compute_row_delta_sigle_samples_frame(self, sample_frame: pd.DataFrame, time_header_label: str, columns_header: typing.List, shifted_cols_header: typing.List) \ -> pd.DataFrame: """ Computes the difference between each value present in th time column. Copies and shift by one position up all the values present in the remaining columns. Parameters: sample_frame: the traj to be processed time_header_label: the label for the times columns_header: the original header of sample_frame shifted_cols_header: a copy of columns_header with changed names of the contents Returns: sample_frame: the processed dataframe """ sample_frame[time_header_label] = sample_frame[time_header_label].diff().shift(-1) shifted_cols = sample_frame[columns_header].shift(-1).fillna(0).astype('int32') #print(shifted_cols) shifted_cols.columns = shifted_cols_header sample_frame = sample_frame.assign(**shifted_cols) sample_frame.drop(sample_frame.tail(1).index, inplace=True) return sample_frame def compute_row_delta_in_all_samples_frames(self, time_header_label: str): """ Calls the method compute_row_delta_sigle_samples_frame on every dataframe present in the list self.df_samples_list. Concatenates the result in the dataframe concatanated_samples Parameters: time_header_label: the label of the time column Returns: void """ """columns_header = list(self.df_samples_list[0].columns.values) columns_header.remove('Time') self.sorter = columns_header""" shifted_cols_header = [s + "S" for s in self.sorter] compute_row_delta = self.compute_row_delta_sigle_samples_frame """for indx, sample in enumerate(self.df_samples_list): self.df_samples_list[indx] = self.compute_row_delta_sigle_samples_frame(sample, time_header_label, self.sorter, shifted_cols_header)""" self.df_samples_list = [compute_row_delta(sample, time_header_label, self.sorter, shifted_cols_header) for sample in self.df_samples_list] self._concatenated_samples = pd.concat(self.df_samples_list) complete_header = self.sorter[:] complete_header.insert(0,'Time') complete_header.extend(shifted_cols_header) #print("Complete Header", complete_header) self._concatenated_samples = self._concatenated_samples[complete_header] #print("Concat Samples",self._concatenated_samples) def build_list_of_samples_array(self, data_frame: pd.DataFrame) -> typing.List: """ Builds a List containing the columns of dataframe and converts them to a numpy array. Parameters: :data_frame: the dataframe from which the columns have to be extracted and converted Returns: :columns_list: the resulting list of numpy arrays """ columns_list = [data_frame[column].to_numpy() for column in data_frame] #for column in data_frame: #columns_list.append(data_frame[column].to_numpy()) return columns_list def clear_concatenated_frame(self): """ Removes all values in the dataframe concatenated_samples Parameters: void Returns: void """ self._concatenated_samples = self._concatenated_samples.iloc[0:0] def clear_data_frame_list(self): """ Removes all values present in the dataframes in the list df_samples_list """ for indx in range(len(self.df_samples_list)): # Le singole traj non servono piĆ¹ #TODO usare list comprens self.df_samples_list[indx] = self.df_samples_list[indx].iloc[0:0] def import_sampled_cims(self, raw_data: typing.List, indx: int, cims_key: str) -> typing.Dict: cims_for_all_vars = {} for var in raw_data[indx][cims_key]: sampled_cims_list = [] cims_for_all_vars[var] = sampled_cims_list for p_comb in raw_data[indx][cims_key][var]: cims_for_all_vars[var].append(pd.DataFrame(raw_data[indx][cims_key][var][p_comb]).to_numpy()) return cims_for_all_vars @property def concatenated_samples(self): return self._concatenated_samples @property def variables(self): return self._df_variables @property def structure(self): return self._df_structure