import typing import networkx as nx import numpy as np class NetworkGraph: """ Abstracts the infos contained in the Structure class in the form of a directed graph. Has the task of creating all the necessary filtering structures for parameters estimation :graph_struct: the Structure object from which infos about the net will be extracted :graph: directed graph :nodes_labels: the symbolic names of the variables :nodes_indexes: the indexes of the nodes :nodes_values: the cardinalites of the nodes :aggregated_info_about_nodes_parents: a structure that contains all the necessary infos about every parents of every node in the net :_fancy_indexing: the indexes of every parent of every node in the net :_time_scalar_indexing_structure: the indexing structure for state res time estimation :_transition_scalar_indexing_structure: the indexing structure for transition computation :_time_filtering: the columns filtering structure used in the computation of the state res times :_transition_filtering: the columns filtering structure used in the computation of the transition from one state to another :self._p_combs_structure: all the possible parents states combination for every node in the net """ def __init__(self, graph_struct): self.graph_struct = graph_struct self.graph = nx.DiGraph() self._nodes_indexes = self.graph_struct.nodes_indexes self._nodes_labels = self.graph_struct.nodes_labels self._nodes_values = self.graph_struct.nodes_values self.aggregated_info_about_nodes_parents = None self._fancy_indexing = None self._time_scalar_indexing_structure = None self._transition_scalar_indexing_structure = None self._time_filtering = None self._transition_filtering = None self._p_combs_structure = None def init_graph(self): self.add_nodes(self._nodes_labels) self.add_edges(self.graph_struct.edges) self.aggregated_info_about_nodes_parents = self.get_ord_set_of_par_of_all_nodes() self._fancy_indexing = self.build_fancy_indexing_structure(0) self.build_scalar_indexing_structures() self.build_time_columns_filtering_structure() self.build_transition_columns_filtering_structure() self._p_combs_structure = self.build_p_combs_structure() def fast_init(self, node_id: str): """ Initializes all the necessary structures for parameters estimation of the node identified by the label node_id Parameters: node_id: the label of the node Returns: void """ self.add_nodes(self._nodes_labels) self.add_edges(self.graph_struct.edges) self.aggregated_info_about_nodes_parents = self.get_ordered_by_indx_set_of_parents(node_id) self._fancy_indexing = self.aggregated_info_about_nodes_parents[1] p_indxs = self._fancy_indexing p_vals = self.aggregated_info_about_nodes_parents[2] self._time_scalar_indexing_structure = self.build_time_scalar_indexing_structure_for_a_node(node_id, p_vals) self._transition_scalar_indexing_structure = self.build_transition_scalar_indexing_structure_for_a_node(node_id, p_vals) node_indx = self.get_node_indx(node_id) self._time_filtering = self.build_time_columns_filtering_for_a_node(node_indx, p_indxs) self._transition_filtering = self.build_transition_filtering_for_a_node(node_indx, p_indxs) self._p_combs_structure = self.build_p_comb_structure_for_a_node(p_vals) def add_nodes(self, list_of_nodes: typing.List): """ Adds the nodes to the graph contained in the list of nodes list_of_nodes. Sets all the properties that identify a nodes (index, positional index, cardinality) Parameters: list_of_nodes: the nodes to add to graph Returns: void """ nodes_indxs = self._nodes_indexes nodes_vals = self.graph_struct.nodes_values pos = 0 for id, node_indx, node_val in zip(list_of_nodes, nodes_indxs, nodes_vals): self.graph.add_node(id, indx=node_indx, val=node_val, pos_indx=pos) pos += 1 def add_edges(self, list_of_edges: typing.List): """ Add the edges to the graph contained in the list list_of_edges. Parameters: list_of_edges Returns: void """ self.graph.add_edges_from(list_of_edges) def get_ordered_by_indx_set_of_parents(self, node: str): """ Builds the aggregated structure that holds all the infos relative to the parent set of the node, namely (parents_labels, parents_indexes, parents_cardinalities). N.B. The parent set is sorted using the list of sorted nodes nodes Parameters: node: the label of the node Returns: a tuple containing all the parent set infos """ parents = self.get_parents_by_id(node) nodes = self._nodes_labels d = {v: i for i, v in enumerate(nodes)} sorted_parents = sorted(parents, key=lambda v: d[v]) get_node_indx = self.get_node_indx p_indxes = [get_node_indx(node) for node in sorted_parents] p_values = [self.get_states_number(node) for node in sorted_parents] return (sorted_parents, p_indxes, p_values) def get_ord_set_of_par_of_all_nodes(self): get_ordered_by_indx_set_of_parents = self.get_ordered_by_indx_set_of_parents result = [get_ordered_by_indx_set_of_parents(node) for node in self._nodes_labels] return result def get_ordered_by_indx_parents_values_for_all_nodes(self): pars_values = [i[2] for i in self.aggregated_info_about_nodes_parents] return pars_values def build_fancy_indexing_structure(self, start_indx): if start_indx > 0: pass else: fancy_indx = [i[1] for i in self.aggregated_info_about_nodes_parents] return fancy_indx def build_time_scalar_indexing_structure_for_a_node(self, node_id: str, parents_vals: typing.List) -> np.ndarray: """ Builds an indexing structure for the computation of state residence times values. Parameters: node_id: the node label parents_vals: the caridinalites of the node's parents Returns: a numpy array. """ T_vector = np.array([self.get_states_number(node_id)]) T_vector = np.append(T_vector, parents_vals) T_vector = T_vector.cumprod().astype(np.int) return T_vector def build_transition_scalar_indexing_structure_for_a_node(self, node_id: str, parents_vals: typing.List) -> np.ndarray: """ Builds an indexing structure for the computation of state transitions values. Parameters: node_id: the node label parents_vals: the caridinalites of the node's parents Returns: a numpy array. """ node_states_number = self.get_states_number(node_id) M_vector = np.array([node_states_number, node_states_number]) M_vector = np.append(M_vector, parents_vals) M_vector = M_vector.cumprod().astype(np.int) return M_vector def build_time_columns_filtering_for_a_node(self, node_indx: int, p_indxs: typing.List) -> np.ndarray: """ Builds the necessary structure to filter the desired columns indicated by node_indx and p_indxs in the dataset. This structute will be used in the computation of the state res times. Parameters: node_indx: the index of the node p_indxs: the indexes of the node's parents Returns: a numpy array """ return np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int) def build_transition_filtering_for_a_node(self, node_indx, p_indxs) -> np.ndarray: """ Builds the necessary structure to filter the desired columns indicated by node_indx and p_indxs in the dataset. This structute will be used in the computation of the state transitions values. Parameters: node_indx: the index of the node p_indxs: the indexes of the node's parents Returns: a numpy array """ nodes_number = self.graph_struct.total_variables_number return np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int) def build_p_comb_structure_for_a_node(self, parents_values: typing.List) -> np.ndarray: """ Builds the combinatory structure that contains the combinations of all the values contained in parents_values. Parameters: parents_values: the cardinalities of the nodes Returns: a numpy matrix containinga grid of the combinations """ tmp = [] for val in parents_values: tmp.append([x for x in range(val)]) if len(parents_values) > 0: parents_comb = np.array(np.meshgrid(*tmp)).T.reshape(-1, len(parents_values)) if len(parents_values) > 1: tmp_comb = parents_comb[:, 1].copy() parents_comb[:, 1] = parents_comb[:, 0].copy() parents_comb[:, 0] = tmp_comb else: parents_comb = np.array([[]], dtype=np.int) return parents_comb def build_time_columns_filtering_structure(self): nodes_indxs = self._nodes_indexes self._time_filtering = [np.append(np.array([node_indx], dtype=np.int), p_indxs).astype(np.int) for node_indx, p_indxs in zip(nodes_indxs, self._fancy_indexing)] def build_transition_columns_filtering_structure(self): nodes_number = self.graph_struct.total_variables_number nodes_indxs = self._nodes_indexes self._transition_filtering = [np.array([node_indx + nodes_number, node_indx, *p_indxs], dtype=np.int) for node_indx, p_indxs in zip(nodes_indxs, self._fancy_indexing)] def build_scalar_indexing_structures(self): parents_values_for_all_nodes = self.get_ordered_by_indx_parents_values_for_all_nodes() build_transition_scalar_indexing_structure_for_a_node = self.build_transition_scalar_indexing_structure_for_a_node build_time_scalar_indexing_structure_for_a_node = self.build_time_scalar_indexing_structure_for_a_node aggr = [(build_transition_scalar_indexing_structure_for_a_node(node_id, p_vals), build_time_scalar_indexing_structure_for_a_node(node_id, p_vals)) for node_id, p_vals in zip(self._nodes_labels, parents_values_for_all_nodes)] self._transition_scalar_indexing_structure = [i[0] for i in aggr] self._time_scalar_indexing_structure = [i[1] for i in aggr] def build_p_combs_structure(self): parents_values_for_all_nodes = self.get_ordered_by_indx_parents_values_for_all_nodes() p_combs_struct = [self.build_p_comb_structure_for_a_node(p_vals) for p_vals in parents_values_for_all_nodes] return p_combs_struct def get_parents_by_id(self, node_id): return list(self.graph.predecessors(node_id)) def get_states_number(self, node_id): return self.graph.nodes[node_id]['val'] def get_node_indx(self, node_id): return nx.get_node_attributes(self.graph, 'indx')[node_id] def get_positional_node_indx(self, node_id): return self.graph.nodes[node_id]['pos_indx'] @property def nodes(self): return self._nodes_labels @property def edges(self): return list(self.graph.edges) @property def nodes_indexes(self): return self._nodes_indexes @property def nodes_values(self): return self._nodes_values @property def time_scalar_indexing_strucure(self): return self._time_scalar_indexing_structure @property def time_filtering(self): return self._time_filtering @property def transition_scalar_indexing_structure(self): return self._transition_scalar_indexing_structure @property def transition_filtering(self): return self._transition_filtering @property def p_combs(self): return self._p_combs_structure