""" GUI progressbar decorator for iterators. Includes a default `range` iterator printing to `stderr`. Usage: >>> from tqdm.gui import trange, tqdm >>> for i in trange(10): ... ... """ # future division is important to divide integers and get as # a result precise floating numbers (instead of truncated int) from __future__ import division, absolute_import # import compatibility functions and utilities from .utils import _range # to inherit from the tqdm class from .std import tqdm as std_tqdm from .std import TqdmExperimentalWarning from warnings import warn __author__ = {"github.com/": ["casperdcl", "lrq3000"]} __all__ = ['tqdm_gui', 'tgrange', 'tqdm', 'trange'] class tqdm_gui(std_tqdm): # pragma: no cover """ Experimental GUI version of tqdm! """ # TODO: @classmethod: write() on GUI? def __init__(self, *args, **kwargs): import matplotlib as mpl import matplotlib.pyplot as plt from collections import deque kwargs['gui'] = True super(tqdm_gui, self).__init__(*args, **kwargs) # Initialize the GUI display if self.disable or not kwargs['gui']: return warn('GUI is experimental/alpha', TqdmExperimentalWarning, stacklevel=2) self.mpl = mpl self.plt = plt self.sp = None # Remember if external environment uses toolbars self.toolbar = self.mpl.rcParams['toolbar'] self.mpl.rcParams['toolbar'] = 'None' self.mininterval = max(self.mininterval, 0.5) self.fig, ax = plt.subplots(figsize=(9, 2.2)) # self.fig.subplots_adjust(bottom=0.2) total = self.__len__() # avoids TypeError on None #971 if total is not None: self.xdata = [] self.ydata = [] self.zdata = [] else: self.xdata = deque([]) self.ydata = deque([]) self.zdata = deque([]) self.line1, = ax.plot(self.xdata, self.ydata, color='b') self.line2, = ax.plot(self.xdata, self.zdata, color='k') ax.set_ylim(0, 0.001) if total is not None: ax.set_xlim(0, 100) ax.set_xlabel('percent') self.fig.legend((self.line1, self.line2), ('cur', 'est'), loc='center right') # progressbar self.hspan = plt.axhspan(0, 0.001, xmin=0, xmax=0, color='g') else: # ax.set_xlim(-60, 0) ax.set_xlim(0, 60) ax.invert_xaxis() ax.set_xlabel('seconds') ax.legend(('cur', 'est'), loc='lower left') ax.grid() # ax.set_xlabel('seconds') ax.set_ylabel((self.unit if self.unit else 'it') + '/s') if self.unit_scale: plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0)) ax.yaxis.get_offset_text().set_x(-0.15) # Remember if external environment is interactive self.wasion = plt.isinteractive() plt.ion() self.ax = ax def __iter__(self): # TODO: somehow allow the following: # if not self.gui: # return super(tqdm_gui, self).__iter__() iterable = self.iterable if self.disable: for obj in iterable: yield obj return # ncols = self.ncols mininterval = self.mininterval maxinterval = self.maxinterval miniters = self.miniters dynamic_miniters = self.dynamic_miniters last_print_t = self.last_print_t last_print_n = self.last_print_n n = self.n # dynamic_ncols = self.dynamic_ncols smoothing = self.smoothing avg_time = self.avg_time time = self._time for obj in iterable: yield obj # Update and possibly print the progressbar. # Note: does not call self.update(1) for speed optimisation. n += 1 # check counter first to avoid calls to time() if n - last_print_n >= self.miniters: miniters = self.miniters # watch monitoring thread changes delta_t = time() - last_print_t if delta_t >= mininterval: cur_t = time() delta_it = n - last_print_n # EMA (not just overall average) if smoothing and delta_t and delta_it: rate = delta_t / delta_it avg_time = self.ema(rate, avg_time, smoothing) self.avg_time = avg_time self.n = n self.display() # If no `miniters` was specified, adjust automatically # to the max iteration rate seen so far between 2 prints if dynamic_miniters: if maxinterval and delta_t >= maxinterval: # Adjust miniters to time interval by rule of 3 if mininterval: # Set miniters to correspond to mininterval miniters = delta_it * mininterval / delta_t else: # Set miniters to correspond to maxinterval miniters = delta_it * maxinterval / delta_t elif smoothing: # EMA-weight miniters to converge # towards the timeframe of mininterval rate = delta_it if mininterval and delta_t: rate *= mininterval / delta_t miniters = self.ema(rate, miniters, smoothing) else: # Maximum nb of iterations between 2 prints miniters = max(miniters, delta_it) # Store old values for next call self.n = self.last_print_n = last_print_n = n self.last_print_t = last_print_t = cur_t self.miniters = miniters # Closing the progress bar. # Update some internal variables for close(). self.last_print_n = last_print_n self.n = n self.miniters = miniters self.close() def update(self, n=1): # if not self.gui: # return super(tqdm_gui, self).close() if self.disable: return if n < 0: self.last_print_n += n # for auto-refresh logic to work self.n += n # check counter first to reduce calls to time() if self.n - self.last_print_n >= self.miniters: delta_t = self._time() - self.last_print_t if delta_t >= self.mininterval: cur_t = self._time() delta_it = self.n - self.last_print_n # >= n # elapsed = cur_t - self.start_t # EMA (not just overall average) if self.smoothing and delta_t and delta_it: rate = delta_t / delta_it self.avg_time = self.ema( rate, self.avg_time, self.smoothing) self.display() # If no `miniters` was specified, adjust automatically to the # maximum iteration rate seen so far between two prints. # e.g.: After running `tqdm.update(5)`, subsequent # calls to `tqdm.update()` will only cause an update after # at least 5 more iterations. if self.dynamic_miniters: if self.maxinterval and delta_t >= self.maxinterval: if self.mininterval: self.miniters = delta_it * self.mininterval \ / delta_t else: self.miniters = delta_it * self.maxinterval \ / delta_t elif self.smoothing: self.miniters = self.smoothing * delta_it * \ (self.mininterval / delta_t if self.mininterval and delta_t else 1) + \ (1 - self.smoothing) * self.miniters else: self.miniters = max(self.miniters, delta_it) # Store old values for next call self.last_print_n = self.n self.last_print_t = cur_t return True def close(self): # if not self.gui: # return super(tqdm_gui, self).close() if self.disable: return self.disable = True with self.get_lock(): self._instances.remove(self) # Restore toolbars self.mpl.rcParams['toolbar'] = self.toolbar # Return to non-interactive mode if not self.wasion: self.plt.ioff() if not self.leave: self.plt.close(self.fig) def display(self): n = self.n cur_t = self._time() elapsed = cur_t - self.start_t delta_it = n - self.last_print_n delta_t = cur_t - self.last_print_t # Inline due to multiple calls total = self.total xdata = self.xdata ydata = self.ydata zdata = self.zdata ax = self.ax line1 = self.line1 line2 = self.line2 # instantaneous rate y = delta_it / delta_t # overall rate z = n / elapsed # update line data xdata.append(n * 100.0 / total if total else cur_t) ydata.append(y) zdata.append(z) # Discard old values # xmin, xmax = ax.get_xlim() # if (not total) and elapsed > xmin * 1.1: if (not total) and elapsed > 66: xdata.popleft() ydata.popleft() zdata.popleft() ymin, ymax = ax.get_ylim() if y > ymax or z > ymax: ymax = 1.1 * y ax.set_ylim(ymin, ymax) ax.figure.canvas.draw() if total: line1.set_data(xdata, ydata) line2.set_data(xdata, zdata) try: poly_lims = self.hspan.get_xy() except AttributeError: self.hspan = self.plt.axhspan( 0, 0.001, xmin=0, xmax=0, color='g') poly_lims = self.hspan.get_xy() poly_lims[0, 1] = ymin poly_lims[1, 1] = ymax poly_lims[2] = [n / total, ymax] poly_lims[3] = [poly_lims[2, 0], ymin] if len(poly_lims) > 4: poly_lims[4, 1] = ymin self.hspan.set_xy(poly_lims) else: t_ago = [cur_t - i for i in xdata] line1.set_data(t_ago, ydata) line2.set_data(t_ago, zdata) ax.set_title(self.format_meter( n, total, elapsed, 0, self.desc, self.ascii, self.unit, self.unit_scale, 1 / self.avg_time if self.avg_time else None, self.bar_format, self.postfix, self.unit_divisor), fontname="DejaVu Sans Mono", fontsize=11) self.plt.pause(1e-9) def tgrange(*args, **kwargs): """ A shortcut for `tqdm.gui.tqdm(xrange(*args), **kwargs)`. On Python3+, `range` is used instead of `xrange`. """ return tqdm_gui(_range(*args), **kwargs) # Aliases tqdm = tqdm_gui trange = tgrange