""" Unit test for SLSQP optimization. """ from numpy.testing import (assert_, assert_array_almost_equal, assert_allclose, assert_equal) from pytest import raises as assert_raises import numpy as np from scipy.optimize import fmin_slsqp, minimize, Bounds class MyCallBack(object): """pass a custom callback function This makes sure it's being used. """ def __init__(self): self.been_called = False self.ncalls = 0 def __call__(self, x): self.been_called = True self.ncalls += 1 class TestSLSQP(object): """ Test SLSQP algorithm using Example 14.4 from Numerical Methods for Engineers by Steven Chapra and Raymond Canale. This example maximizes the function f(x) = 2*x*y + 2*x - x**2 - 2*y**2, which has a maximum at x=2, y=1. """ def setup_method(self): self.opts = {'disp': False} def fun(self, d, sign=1.0): """ Arguments: d - A list of two elements, where d[0] represents x and d[1] represents y in the following equation. sign - A multiplier for f. Since we want to optimize it, and the SciPy optimizers can only minimize functions, we need to multiply it by -1 to achieve the desired solution Returns: 2*x*y + 2*x - x**2 - 2*y**2 """ x = d[0] y = d[1] return sign*(2*x*y + 2*x - x**2 - 2*y**2) def jac(self, d, sign=1.0): """ This is the derivative of fun, returning a NumPy array representing df/dx and df/dy. """ x = d[0] y = d[1] dfdx = sign*(-2*x + 2*y + 2) dfdy = sign*(2*x - 4*y) return np.array([dfdx, dfdy], float) def fun_and_jac(self, d, sign=1.0): return self.fun(d, sign), self.jac(d, sign) def f_eqcon(self, x, sign=1.0): """ Equality constraint """ return np.array([x[0] - x[1]]) def fprime_eqcon(self, x, sign=1.0): """ Equality constraint, derivative """ return np.array([[1, -1]]) def f_eqcon_scalar(self, x, sign=1.0): """ Scalar equality constraint """ return self.f_eqcon(x, sign)[0] def fprime_eqcon_scalar(self, x, sign=1.0): """ Scalar equality constraint, derivative """ return self.fprime_eqcon(x, sign)[0].tolist() def f_ieqcon(self, x, sign=1.0): """ Inequality constraint """ return np.array([x[0] - x[1] - 1.0]) def fprime_ieqcon(self, x, sign=1.0): """ Inequality constraint, derivative """ return np.array([[1, -1]]) def f_ieqcon2(self, x): """ Vector inequality constraint """ return np.asarray(x) def fprime_ieqcon2(self, x): """ Vector inequality constraint, derivative """ return np.identity(x.shape[0]) # minimize def test_minimize_unbounded_approximated(self): # Minimize, method='SLSQP': unbounded, approximated jacobian. jacs = [None, False, '2-point', '3-point'] for jac in jacs: res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ), jac=jac, method='SLSQP', options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [2, 1]) def test_minimize_unbounded_given(self): # Minimize, method='SLSQP': unbounded, given Jacobian. res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ), jac=self.jac, method='SLSQP', options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [2, 1]) def test_minimize_bounded_approximated(self): # Minimize, method='SLSQP': bounded, approximated jacobian. jacs = [None, False, '2-point', '3-point'] for jac in jacs: with np.errstate(invalid='ignore'): res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ), jac=jac, bounds=((2.5, None), (None, 0.5)), method='SLSQP', options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [2.5, 0.5]) assert_(2.5 <= res.x[0]) assert_(res.x[1] <= 0.5) def test_minimize_unbounded_combined(self): # Minimize, method='SLSQP': unbounded, combined function and Jacobian. res = minimize(self.fun_and_jac, [-1.0, 1.0], args=(-1.0, ), jac=True, method='SLSQP', options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [2, 1]) def test_minimize_equality_approximated(self): # Minimize with method='SLSQP': equality constraint, approx. jacobian. jacs = [None, False, '2-point', '3-point'] for jac in jacs: res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ), jac=jac, constraints={'type': 'eq', 'fun': self.f_eqcon, 'args': (-1.0, )}, method='SLSQP', options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [1, 1]) def test_minimize_equality_given(self): # Minimize with method='SLSQP': equality constraint, given Jacobian. res = minimize(self.fun, [-1.0, 1.0], jac=self.jac, method='SLSQP', args=(-1.0,), constraints={'type': 'eq', 'fun':self.f_eqcon, 'args': (-1.0, )}, options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [1, 1]) def test_minimize_equality_given2(self): # Minimize with method='SLSQP': equality constraint, given Jacobian # for fun and const. res = minimize(self.fun, [-1.0, 1.0], method='SLSQP', jac=self.jac, args=(-1.0,), constraints={'type': 'eq', 'fun': self.f_eqcon, 'args': (-1.0, ), 'jac': self.fprime_eqcon}, options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [1, 1]) def test_minimize_equality_given_cons_scalar(self): # Minimize with method='SLSQP': scalar equality constraint, given # Jacobian for fun and const. res = minimize(self.fun, [-1.0, 1.0], method='SLSQP', jac=self.jac, args=(-1.0,), constraints={'type': 'eq', 'fun': self.f_eqcon_scalar, 'args': (-1.0, ), 'jac': self.fprime_eqcon_scalar}, options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [1, 1]) def test_minimize_inequality_given(self): # Minimize with method='SLSQP': inequality constraint, given Jacobian. res = minimize(self.fun, [-1.0, 1.0], method='SLSQP', jac=self.jac, args=(-1.0, ), constraints={'type': 'ineq', 'fun': self.f_ieqcon, 'args': (-1.0, )}, options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [2, 1], atol=1e-3) def test_minimize_inequality_given_vector_constraints(self): # Minimize with method='SLSQP': vector inequality constraint, given # Jacobian. res = minimize(self.fun, [-1.0, 1.0], jac=self.jac, method='SLSQP', args=(-1.0,), constraints={'type': 'ineq', 'fun': self.f_ieqcon2, 'jac': self.fprime_ieqcon2}, options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [2, 1]) def test_minimize_bound_equality_given2(self): # Minimize with method='SLSQP': bounds, eq. const., given jac. for # fun. and const. res = minimize(self.fun, [-1.0, 1.0], method='SLSQP', jac=self.jac, args=(-1.0, ), bounds=[(-0.8, 1.), (-1, 0.8)], constraints={'type': 'eq', 'fun': self.f_eqcon, 'args': (-1.0, ), 'jac': self.fprime_eqcon}, options=self.opts) assert_(res['success'], res['message']) assert_allclose(res.x, [0.8, 0.8], atol=1e-3) assert_(-0.8 <= res.x[0] <= 1) assert_(-1 <= res.x[1] <= 0.8) # fmin_slsqp def test_unbounded_approximated(self): # SLSQP: unbounded, approximated Jacobian. res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ), iprint = 0, full_output = 1) x, fx, its, imode, smode = res assert_(imode == 0, imode) assert_array_almost_equal(x, [2, 1]) def test_unbounded_given(self): # SLSQP: unbounded, given Jacobian. res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ), fprime = self.jac, iprint = 0, full_output = 1) x, fx, its, imode, smode = res assert_(imode == 0, imode) assert_array_almost_equal(x, [2, 1]) def test_equality_approximated(self): # SLSQP: equality constraint, approximated Jacobian. res = fmin_slsqp(self.fun,[-1.0,1.0], args=(-1.0,), eqcons = [self.f_eqcon], iprint = 0, full_output = 1) x, fx, its, imode, smode = res assert_(imode == 0, imode) assert_array_almost_equal(x, [1, 1]) def test_equality_given(self): # SLSQP: equality constraint, given Jacobian. res = fmin_slsqp(self.fun, [-1.0, 1.0], fprime=self.jac, args=(-1.0,), eqcons = [self.f_eqcon], iprint = 0, full_output = 1) x, fx, its, imode, smode = res assert_(imode == 0, imode) assert_array_almost_equal(x, [1, 1]) def test_equality_given2(self): # SLSQP: equality constraint, given Jacobian for fun and const. res = fmin_slsqp(self.fun, [-1.0, 1.0], fprime=self.jac, args=(-1.0,), f_eqcons = self.f_eqcon, fprime_eqcons = self.fprime_eqcon, iprint = 0, full_output = 1) x, fx, its, imode, smode = res assert_(imode == 0, imode) assert_array_almost_equal(x, [1, 1]) def test_inequality_given(self): # SLSQP: inequality constraint, given Jacobian. res = fmin_slsqp(self.fun, [-1.0, 1.0], fprime=self.jac, args=(-1.0, ), ieqcons = [self.f_ieqcon], iprint = 0, full_output = 1) x, fx, its, imode, smode = res assert_(imode == 0, imode) assert_array_almost_equal(x, [2, 1], decimal=3) def test_bound_equality_given2(self): # SLSQP: bounds, eq. const., given jac. for fun. and const. res = fmin_slsqp(self.fun, [-1.0, 1.0], fprime=self.jac, args=(-1.0, ), bounds = [(-0.8, 1.), (-1, 0.8)], f_eqcons = self.f_eqcon, fprime_eqcons = self.fprime_eqcon, iprint = 0, full_output = 1) x, fx, its, imode, smode = res assert_(imode == 0, imode) assert_array_almost_equal(x, [0.8, 0.8], decimal=3) assert_(-0.8 <= x[0] <= 1) assert_(-1 <= x[1] <= 0.8) def test_scalar_constraints(self): # Regression test for gh-2182 x = fmin_slsqp(lambda z: z**2, [3.], ieqcons=[lambda z: z[0] - 1], iprint=0) assert_array_almost_equal(x, [1.]) x = fmin_slsqp(lambda z: z**2, [3.], f_ieqcons=lambda z: [z[0] - 1], iprint=0) assert_array_almost_equal(x, [1.]) def test_integer_bounds(self): # This should not raise an exception fmin_slsqp(lambda z: z**2 - 1, [0], bounds=[[0, 1]], iprint=0) def test_array_bounds(self): # NumPy used to treat n-dimensional 1-element arrays as scalars # in some cases. The handling of `bounds` by `fmin_slsqp` still # supports this behavior. bounds = [(-np.inf, np.inf), (np.array([2]), np.array([3]))] x = fmin_slsqp(lambda z: np.sum(z**2 - 1), [2.5, 2.5], bounds=bounds, iprint=0) assert_array_almost_equal(x, [0, 2]) def test_obj_must_return_scalar(self): # Regression test for Github Issue #5433 # If objective function does not return a scalar, raises ValueError with assert_raises(ValueError): fmin_slsqp(lambda x: [0, 1], [1, 2, 3]) def test_obj_returns_scalar_in_list(self): # Test for Github Issue #5433 and PR #6691 # Objective function should be able to return length-1 Python list # containing the scalar fmin_slsqp(lambda x: [0], [1, 2, 3], iprint=0) def test_callback(self): # Minimize, method='SLSQP': unbounded, approximated jacobian. Check for callback callback = MyCallBack() res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ), method='SLSQP', callback=callback, options=self.opts) assert_(res['success'], res['message']) assert_(callback.been_called) assert_equal(callback.ncalls, res['nit']) def test_inconsistent_linearization(self): # SLSQP must be able to solve this problem, even if the # linearized problem at the starting point is infeasible. # Linearized constraints are # # 2*x0[0]*x[0] >= 1 # # At x0 = [0, 1], the second constraint is clearly infeasible. # This triggers a call with n2==1 in the LSQ subroutine. x = [0, 1] f1 = lambda x: x[0] + x[1] - 2 f2 = lambda x: x[0]**2 - 1 sol = minimize( lambda x: x[0]**2 + x[1]**2, x, constraints=({'type':'eq','fun': f1}, {'type':'ineq','fun': f2}), bounds=((0,None), (0,None)), method='SLSQP') x = sol.x assert_allclose(f1(x), 0, atol=1e-8) assert_(f2(x) >= -1e-8) assert_(sol.success, sol) def test_regression_5743(self): # SLSQP must not indicate success for this problem, # which is infeasible. x = [1, 2] sol = minimize( lambda x: x[0]**2 + x[1]**2, x, constraints=({'type':'eq','fun': lambda x: x[0]+x[1]-1}, {'type':'ineq','fun': lambda x: x[0]-2}), bounds=((0,None), (0,None)), method='SLSQP') assert_(not sol.success, sol) def test_gh_6676(self): def func(x): return (x[0] - 1)**2 + 2*(x[1] - 1)**2 + 0.5*(x[2] - 1)**2 sol = minimize(func, [0, 0, 0], method='SLSQP') assert_(sol.jac.shape == (3,)) def test_invalid_bounds(self): # Raise correct error when lower bound is greater than upper bound. # See Github issue 6875. bounds_list = [ ((1, 2), (2, 1)), ((2, 1), (1, 2)), ((2, 1), (2, 1)), ((np.inf, 0), (np.inf, 0)), ((1, -np.inf), (0, 1)), ] for bounds in bounds_list: with assert_raises(ValueError): minimize(self.fun, [-1.0, 1.0], bounds=bounds, method='SLSQP') def test_bounds_clipping(self): # # SLSQP returns bogus results for initial guess out of bounds, gh-6859 # def f(x): return (x[0] - 1)**2 sol = minimize(f, [10], method='slsqp', bounds=[(None, 0)]) assert_(sol.success) assert_allclose(sol.x, 0, atol=1e-10) sol = minimize(f, [-10], method='slsqp', bounds=[(2, None)]) assert_(sol.success) assert_allclose(sol.x, 2, atol=1e-10) sol = minimize(f, [-10], method='slsqp', bounds=[(None, 0)]) assert_(sol.success) assert_allclose(sol.x, 0, atol=1e-10) sol = minimize(f, [10], method='slsqp', bounds=[(2, None)]) assert_(sol.success) assert_allclose(sol.x, 2, atol=1e-10) sol = minimize(f, [-0.5], method='slsqp', bounds=[(-1, 0)]) assert_(sol.success) assert_allclose(sol.x, 0, atol=1e-10) sol = minimize(f, [10], method='slsqp', bounds=[(-1, 0)]) assert_(sol.success) assert_allclose(sol.x, 0, atol=1e-10) def test_infeasible_initial(self): # Check SLSQP behavior with infeasible initial point def f(x): x, = x return x*x - 2*x + 1 cons_u = [{'type': 'ineq', 'fun': lambda x: 0 - x}] cons_l = [{'type': 'ineq', 'fun': lambda x: x - 2}] cons_ul = [{'type': 'ineq', 'fun': lambda x: 0 - x}, {'type': 'ineq', 'fun': lambda x: x + 1}] sol = minimize(f, [10], method='slsqp', constraints=cons_u) assert_(sol.success) assert_allclose(sol.x, 0, atol=1e-10) sol = minimize(f, [-10], method='slsqp', constraints=cons_l) assert_(sol.success) assert_allclose(sol.x, 2, atol=1e-10) sol = minimize(f, [-10], method='slsqp', constraints=cons_u) assert_(sol.success) assert_allclose(sol.x, 0, atol=1e-10) sol = minimize(f, [10], method='slsqp', constraints=cons_l) assert_(sol.success) assert_allclose(sol.x, 2, atol=1e-10) sol = minimize(f, [-0.5], method='slsqp', constraints=cons_ul) assert_(sol.success) assert_allclose(sol.x, 0, atol=1e-10) sol = minimize(f, [10], method='slsqp', constraints=cons_ul) assert_(sol.success) assert_allclose(sol.x, 0, atol=1e-10) def test_inconsistent_inequalities(self): # gh-7618 def cost(x): return -1 * x[0] + 4 * x[1] def ineqcons1(x): return x[1] - x[0] - 1 def ineqcons2(x): return x[0] - x[1] # The inequalities are inconsistent, so no solution can exist: # # x1 >= x0 + 1 # x0 >= x1 x0 = (1,5) bounds = ((-5, 5), (-5, 5)) cons = (dict(type='ineq', fun=ineqcons1), dict(type='ineq', fun=ineqcons2)) res = minimize(cost, x0, method='SLSQP', bounds=bounds, constraints=cons) assert_(not res.success) def test_new_bounds_type(self): f = lambda x: x[0]**2 + x[1]**2 bounds = Bounds([1, 0], [np.inf, np.inf]) sol = minimize(f, [0, 0], method='slsqp', bounds=bounds) assert_(sol.success) assert_allclose(sol.x, [1, 0]) def test_nested_minimization(self): class NestedProblem(): def __init__(self): self.F_outer_count = 0 def F_outer(self, x): self.F_outer_count += 1 if self.F_outer_count > 1000: raise Exception("Nested minimization failed to terminate.") inner_res = minimize(self.F_inner, (3, 4), method="SLSQP") assert_(inner_res.success) assert_allclose(inner_res.x, [1, 1]) return x[0]**2 + x[1]**2 + x[2]**2 def F_inner(self, x): return (x[0] - 1)**2 + (x[1] - 1)**2 def solve(self): outer_res = minimize(self.F_outer, (5, 5, 5), method="SLSQP") assert_(outer_res.success) assert_allclose(outer_res.x, [0, 0, 0]) problem = NestedProblem() problem.solve() def test_gh1758(self): # the test suggested in gh1758 # https://nlopt.readthedocs.io/en/latest/NLopt_Tutorial/ # implement two equality constraints, in R^2. def fun(x): return np.sqrt(x[1]) def f_eqcon(x): """ Equality constraint """ return x[1] - (2 * x[0]) ** 3 def f_eqcon2(x): """ Equality constraint """ return x[1] - (-x[0] + 1) ** 3 c1 = {'type': 'eq', 'fun': f_eqcon} c2 = {'type': 'eq', 'fun': f_eqcon2} res = minimize(fun, [8, 0.25], method='SLSQP', constraints=[c1, c2], bounds=[(-0.5, 1), (0, 8)]) np.testing.assert_allclose(res.fun, 0.5443310539518) np.testing.assert_allclose(res.x, [0.33333333, 0.2962963]) assert res.success def test_gh9640(self): np.random.seed(10) cons = ({'type': 'ineq', 'fun': lambda x: -x[0] - x[1] - 3}, {'type': 'ineq', 'fun': lambda x: x[1] + x[2] - 2}) bnds = ((-2, 2), (-2, 2), (-2, 2)) target = lambda x: 1 x0 = [-1.8869783504471584, -0.640096352696244, -0.8174212253407696] res = minimize(target, x0, method='SLSQP', bounds=bnds, constraints=cons, options={'disp':False, 'maxiter':10000}) # The problem is infeasible, so it cannot succeed assert not res.success