""" Unified interfaces to root finding algorithms for real or complex scalar functions. Functions --------- - root : find a root of a scalar function. """ import numpy as np from . import zeros as optzeros __all__ = ['root_scalar'] class MemoizeDer(object): """Decorator that caches the value and derivative(s) of function each time it is called. This is a simplistic memoizer that calls and caches a single value of `f(x, *args)`. It assumes that `args` does not change between invocations. It supports the use case of a root-finder where `args` is fixed, `x` changes, and only rarely, if at all, does x assume the same value more than once.""" def __init__(self, fun): self.fun = fun self.vals = None self.x = None self.n_calls = 0 def __call__(self, x, *args): r"""Calculate f or use cached value if available""" # Derivative may be requested before the function itself, always check if self.vals is None or x != self.x: fg = self.fun(x, *args) self.x = x self.n_calls += 1 self.vals = fg[:] return self.vals[0] def fprime(self, x, *args): r"""Calculate f' or use a cached value if available""" if self.vals is None or x != self.x: self(x, *args) return self.vals[1] def fprime2(self, x, *args): r"""Calculate f'' or use a cached value if available""" if self.vals is None or x != self.x: self(x, *args) return self.vals[2] def ncalls(self): return self.n_calls def root_scalar(f, args=(), method=None, bracket=None, fprime=None, fprime2=None, x0=None, x1=None, xtol=None, rtol=None, maxiter=None, options=None): """ Find a root of a scalar function. Parameters ---------- f : callable A function to find a root of. args : tuple, optional Extra arguments passed to the objective function and its derivative(s). method : str, optional Type of solver. Should be one of - 'bisect' :ref:`(see here) ` - 'brentq' :ref:`(see here) ` - 'brenth' :ref:`(see here) ` - 'ridder' :ref:`(see here) ` - 'toms748' :ref:`(see here) ` - 'newton' :ref:`(see here) ` - 'secant' :ref:`(see here) ` - 'halley' :ref:`(see here) ` bracket: A sequence of 2 floats, optional An interval bracketing a root. `f(x, *args)` must have different signs at the two endpoints. x0 : float, optional Initial guess. x1 : float, optional A second guess. fprime : bool or callable, optional If `fprime` is a boolean and is True, `f` is assumed to return the value of the objective function and of the derivative. `fprime` can also be a callable returning the derivative of `f`. In this case, it must accept the same arguments as `f`. fprime2 : bool or callable, optional If `fprime2` is a boolean and is True, `f` is assumed to return the value of the objective function and of the first and second derivatives. `fprime2` can also be a callable returning the second derivative of `f`. In this case, it must accept the same arguments as `f`. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. options : dict, optional A dictionary of solver options. E.g., ``k``, see :obj:`show_options()` for details. Returns ------- sol : RootResults The solution represented as a ``RootResults`` object. Important attributes are: ``root`` the solution , ``converged`` a boolean flag indicating if the algorithm exited successfully and ``flag`` which describes the cause of the termination. See `RootResults` for a description of other attributes. See also -------- show_options : Additional options accepted by the solvers root : Find a root of a vector function. Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default is to use the best method available for the situation presented. If a bracket is provided, it may use one of the bracketing methods. If a derivative and an initial value are specified, it may select one of the derivative-based methods. If no method is judged applicable, it will raise an Exception. Examples -------- Find the root of a simple cubic >>> from scipy import optimize >>> def f(x): ... return (x**3 - 1) # only one real root at x = 1 >>> def fprime(x): ... return 3*x**2 The `brentq` method takes as input a bracket >>> sol = optimize.root_scalar(f, bracket=[0, 3], method='brentq') >>> sol.root, sol.iterations, sol.function_calls (1.0, 10, 11) The `newton` method takes as input a single point and uses the derivative(s) >>> sol = optimize.root_scalar(f, x0=0.2, fprime=fprime, method='newton') >>> sol.root, sol.iterations, sol.function_calls (1.0, 11, 22) The function can provide the value and derivative(s) in a single call. >>> def f_p_pp(x): ... return (x**3 - 1), 3*x**2, 6*x >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, method='newton') >>> sol.root, sol.iterations, sol.function_calls (1.0, 11, 11) >>> sol = optimize.root_scalar(f_p_pp, x0=0.2, fprime=True, fprime2=True, method='halley') >>> sol.root, sol.iterations, sol.function_calls (1.0, 7, 8) """ if not isinstance(args, tuple): args = (args,) if options is None: options = {} # fun also returns the derivative(s) is_memoized = False if fprime2 is not None and not callable(fprime2): if bool(fprime2): f = MemoizeDer(f) is_memoized = True fprime2 = f.fprime2 fprime = f.fprime else: fprime2 = None if fprime is not None and not callable(fprime): if bool(fprime): f = MemoizeDer(f) is_memoized = True fprime = f.fprime else: fprime = None # respect solver-specific default tolerances - only pass in if actually set kwargs = {} for k in ['xtol', 'rtol', 'maxiter']: v = locals().get(k) if v is not None: kwargs[k] = v # Set any solver-specific options if options: kwargs.update(options) # Always request full_output from the underlying method as _root_scalar # always returns a RootResults object kwargs.update(full_output=True, disp=False) # Pick a method if not specified. # Use the "best" method available for the situation. if not method: if bracket: method = 'brentq' elif x0 is not None: if fprime: if fprime2: method = 'halley' else: method = 'newton' else: method = 'secant' if not method: raise ValueError('Unable to select a solver as neither bracket ' 'nor starting point provided.') meth = method.lower() map2underlying = {'halley': 'newton', 'secant': 'newton'} try: methodc = getattr(optzeros, map2underlying.get(meth, meth)) except AttributeError: raise ValueError('Unknown solver %s' % meth) if meth in ['bisect', 'ridder', 'brentq', 'brenth', 'toms748']: if not isinstance(bracket, (list, tuple, np.ndarray)): raise ValueError('Bracket needed for %s' % method) a, b = bracket[:2] r, sol = methodc(f, a, b, args=args, **kwargs) elif meth in ['secant']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if x1 is None: raise ValueError('x1 must not be None for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=None, fprime2=None, x1=x1, **kwargs) elif meth in ['newton']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if not fprime: raise ValueError('fprime must be specified for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=None, **kwargs) elif meth in ['halley']: if x0 is None: raise ValueError('x0 must not be None for %s' % method) if not fprime: raise ValueError('fprime must be specified for %s' % method) if not fprime2: raise ValueError('fprime2 must be specified for %s' % method) if 'xtol' in kwargs: kwargs['tol'] = kwargs.pop('xtol') r, sol = methodc(f, x0, args=args, fprime=fprime, fprime2=fprime2, **kwargs) else: raise ValueError('Unknown solver %s' % method) if is_memoized: # Replace the function_calls count with the memoized count. # Avoids double and triple-counting. n_calls = f.n_calls sol.function_calls = n_calls return sol def _root_scalar_brentq_doc(): r""" Options ------- args : tuple, optional Extra arguments passed to the objective function. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. options: dict, optional Specifies any method-specific options not covered above """ pass def _root_scalar_brenth_doc(): r""" Options ------- args : tuple, optional Extra arguments passed to the objective function. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. options: dict, optional Specifies any method-specific options not covered above. """ pass def _root_scalar_toms748_doc(): r""" Options ------- args : tuple, optional Extra arguments passed to the objective function. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. options: dict, optional Specifies any method-specific options not covered above. """ pass def _root_scalar_secant_doc(): r""" Options ------- args : tuple, optional Extra arguments passed to the objective function. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. x0 : float, required Initial guess. x1 : float, required A second guess. options: dict, optional Specifies any method-specific options not covered above. """ pass def _root_scalar_newton_doc(): r""" Options ------- args : tuple, optional Extra arguments passed to the objective function and its derivative. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. x0 : float, required Initial guess. fprime : bool or callable, optional If `fprime` is a boolean and is True, `f` is assumed to return the value of derivative along with the objective function. `fprime` can also be a callable returning the derivative of `f`. In this case, it must accept the same arguments as `f`. options: dict, optional Specifies any method-specific options not covered above. """ pass def _root_scalar_halley_doc(): r""" Options ------- args : tuple, optional Extra arguments passed to the objective function and its derivatives. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. x0 : float, required Initial guess. fprime : bool or callable, required If `fprime` is a boolean and is True, `f` is assumed to return the value of derivative along with the objective function. `fprime` can also be a callable returning the derivative of `f`. In this case, it must accept the same arguments as `f`. fprime2 : bool or callable, required If `fprime2` is a boolean and is True, `f` is assumed to return the value of 1st and 2nd derivatives along with the objective function. `fprime2` can also be a callable returning the 2nd derivative of `f`. In this case, it must accept the same arguments as `f`. options: dict, optional Specifies any method-specific options not covered above. """ pass def _root_scalar_ridder_doc(): r""" Options ------- args : tuple, optional Extra arguments passed to the objective function. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. options: dict, optional Specifies any method-specific options not covered above. """ pass def _root_scalar_bisect_doc(): r""" Options ------- args : tuple, optional Extra arguments passed to the objective function. xtol : float, optional Tolerance (absolute) for termination. rtol : float, optional Tolerance (relative) for termination. maxiter : int, optional Maximum number of iterations. options: dict, optional Specifies any method-specific options not covered above. """ pass