""" The tests in this package are to ensure the proper resultant dtypes of set operations. """ import numpy as np import pytest from pandas.core.dtypes.common import is_dtype_equal import pandas as pd from pandas import Float64Index, Int64Index, RangeIndex, UInt64Index import pandas._testing as tm from pandas.api.types import pandas_dtype COMPATIBLE_INCONSISTENT_PAIRS = { (Int64Index, RangeIndex): (tm.makeIntIndex, tm.makeRangeIndex), (Float64Index, Int64Index): (tm.makeFloatIndex, tm.makeIntIndex), (Float64Index, RangeIndex): (tm.makeFloatIndex, tm.makeIntIndex), (Float64Index, UInt64Index): (tm.makeFloatIndex, tm.makeUIntIndex), } def test_union_same_types(index): # Union with a non-unique, non-monotonic index raises error # Only needed for bool index factory idx1 = index.sort_values() idx2 = index.sort_values() assert idx1.union(idx2).dtype == idx1.dtype def test_union_different_types(index, index_fixture2): # This test only considers combinations of indices # GH 23525 idx1, idx2 = index, index_fixture2 type_pair = tuple(sorted([type(idx1), type(idx2)], key=lambda x: str(x))) if type_pair in COMPATIBLE_INCONSISTENT_PAIRS: pytest.xfail("This test only considers non compatible indexes.") if any(isinstance(idx, pd.MultiIndex) for idx in (idx1, idx2)): pytest.xfail("This test doesn't consider multiindixes.") if is_dtype_equal(idx1.dtype, idx2.dtype): pytest.xfail("This test only considers non matching dtypes.") # A union with a CategoricalIndex (even as dtype('O')) and a # non-CategoricalIndex can only be made if both indices are monotonic. # This is true before this PR as well. # Union with a non-unique, non-monotonic index raises error # This applies to the boolean index idx1 = idx1.sort_values() idx2 = idx2.sort_values() assert idx1.union(idx2).dtype == np.dtype("O") assert idx2.union(idx1).dtype == np.dtype("O") @pytest.mark.parametrize("idx_fact1,idx_fact2", COMPATIBLE_INCONSISTENT_PAIRS.values()) def test_compatible_inconsistent_pairs(idx_fact1, idx_fact2): # GH 23525 idx1 = idx_fact1(10) idx2 = idx_fact2(20) res1 = idx1.union(idx2) res2 = idx2.union(idx1) assert res1.dtype in (idx1.dtype, idx2.dtype) assert res2.dtype in (idx1.dtype, idx2.dtype) @pytest.mark.parametrize( "left, right, expected", [ ("int64", "int64", "int64"), ("int64", "uint64", "object"), ("int64", "float64", "float64"), ("uint64", "float64", "float64"), ("uint64", "uint64", "uint64"), ("float64", "float64", "float64"), ("datetime64[ns]", "int64", "object"), ("datetime64[ns]", "uint64", "object"), ("datetime64[ns]", "float64", "object"), ("datetime64[ns, CET]", "int64", "object"), ("datetime64[ns, CET]", "uint64", "object"), ("datetime64[ns, CET]", "float64", "object"), ("Period[D]", "int64", "object"), ("Period[D]", "uint64", "object"), ("Period[D]", "float64", "object"), ], ) def test_union_dtypes(left, right, expected): left = pandas_dtype(left) right = pandas_dtype(right) a = pd.Index([], dtype=left) b = pd.Index([], dtype=right) result = (a | b).dtype assert result == expected