from abc import ABC, abstractmethod import pandas as pd import typing class AbstractImporter(ABC): """ Abstract class that exposes all the necessary methods to process the trajectories and the net structure. :_file_path: the file path :_concatenated_samples: the concatenation of all the processed trajectories :_df_structure: Dataframe containing the structure of the network (edges) :_df_variables: Dataframe containing the nodes cardinalities :_df_concatenated_samples: the concatenation and processing of all the trajectories present in the list df_samples list :_sorter: the columns header(excluding the time column) of the Dataframe concatenated_samples """ def __init__(self, file_path: str): """ Parameters: :_file_path: the path to the file containing the data """ self._file_path = file_path self._df_variables = None self._df_structure = None self._concatenated_samples = None self._sorter = None super().__init__() @abstractmethod def import_data(self): """ Imports and prepares all data present needed for susequent computation. Parameters: :void Returns: :void post[self]: the class members self._df_variables and self._df_structure HAVE to be properly constructed as Pandas Dataframes with the following structure: Header of self._df_structure = [From_Node | To_Node] Header of self.df_variables = [Variable_Label | Variable_Cardinality] """ pass @abstractmethod def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List: """ Initializes the self._sorter class member from a trajectory dataframe, exctracting the header of the frame and keeping ONLY the variables symbolic labels, cutting out the time label in the header. Parameters: :sample_frame: The dataframe from which extract the header Returns: :a list containing the processed header. """ pass def compute_row_delta_sigle_samples_frame(self, sample_frame: pd.DataFrame, columns_header: typing.List, shifted_cols_header: typing.List) \ -> pd.DataFrame: """ Computes the difference between each value present in th time column. Copies and shift by one position up all the values present in the remaining columns. Parameters: :sample_frame: the traj to be processed :time_header_label: the label for the times :columns_header: the original header of sample_frame :shifted_cols_header: a copy of columns_header with changed names of the contents Returns: :sample_frame: the processed dataframe pre: the Dataframe sample_frame has to follow the column structure of this header: Header of sample_frame = [Time | Variable values] """ sample_frame.iloc[:, 0] = sample_frame.iloc[:, 0].diff().shift(-1) shifted_cols = sample_frame[columns_header].shift(-1).fillna(0).astype('int32') shifted_cols.columns = shifted_cols_header sample_frame = sample_frame.assign(**shifted_cols) sample_frame.drop(sample_frame.tail(1).index, inplace=True) return sample_frame def compute_row_delta_in_all_samples_frames(self, df_samples_list: typing.List): """ Calls the method compute_row_delta_sigle_samples_frame on every dataframe present in the list _df_samples_list. Concatenates the result in the dataframe concatanated_samples Parameters: time_header_label: the label of the time column df_samples_list: the datframe's list to be processed and concatenated Returns: void pre: the Dataframe sample_frame has to follow the column structure of this header: Header of sample_frame = [Time | Variable values] The class member self._sorter HAS to be properly INITIALIZED (See class members definition doc) """ if not self.sorter: raise RuntimeError("The class member self._sorter has to be INITIALIZED!") shifted_cols_header = [s + "S" for s in self._sorter] compute_row_delta = self.compute_row_delta_sigle_samples_frame proc_samples_list = [compute_row_delta(sample, self._sorter, shifted_cols_header) for sample in df_samples_list] self._concatenated_samples = pd.concat(proc_samples_list) complete_header = self._sorter[:] complete_header.insert(0,'Time') complete_header.extend(shifted_cols_header) self._concatenated_samples = self._concatenated_samples[complete_header] def build_list_of_samples_array(self, data_frame: pd.DataFrame) -> typing.List: """ Builds a List containing the columns of dataframe and converts them to a numpy array. Parameters: :data_frame: the dataframe from which the columns have to be extracted and converted Returns: :columns_list: the resulting list of numpy arrays """ columns_list = [data_frame[column].to_numpy() for column in data_frame] return columns_list def clear_concatenated_frame(self): """ Removes all values in the dataframe concatenated_samples Parameters: :void Returns: :void """ self._concatenated_samples = self._concatenated_samples.iloc[0:0] @property def concatenated_samples(self) -> pd.DataFrame: return self._concatenated_samples @property def variables(self) -> pd.DataFrame: return self._df_variables @property def structure(self) -> pd.DataFrame: return self._df_structure @property def sorter(self) -> typing.List: return self._sorter @property def file_path(self) -> str: return self._file_path