import numpy as np import network_graph as dg import sample_path as sp import priority_queue as pq class RateMatrix(): """ Rappresenta la matrice Q di una generica CTMC costruita a partire dalle informazioni contenute nel grafo dinamico """ def __init__(self, graph, dim): self.graph = graph self.matrix = np.zeros(shape=(dim,dim)) self.pr_queue = pq.PriorityQueue() def build_matrix(self): root = self.graph.get_root_node() root.color = dg.node.Color.GRAY self.pr_queue.enqueue(root) while not self.pr_queue.is_empty(): n = self.pr_queue.dequeue() adjacency_list = self.graph.get_neighbours(n) #print(adjacency_list) time = self.graph.graph[n.state_id]["Time"] sum_of_qs = 0.0 for nd, weight in adjacency_list.items(): sum_of_qs += self.calculate_off_diagonal_element_and_fill_matrix(n.node_id, nd.node_id, weight, time) if self.graph.graph[nd.state_id]["Node"].color == dg.node.Color.WHITE: self.graph.graph[nd.state_id]["Node"].color = dg.node.Color.GRAY self.pr_queue.enqueue(nd) n.color = dg.node.Color.BLACK self.calculate_diagonal_element_and_fill_matrix(sum_of_qs, n.node_id) def calculate_off_diagonal_element_and_fill_matrix(self, start_node, arrival_node, weight, time): q = weight / time self.matrix[start_node][arrival_node] = q return q def calculate_diagonal_element_and_fill_matrix(self, sum_of_qs, start_node): self.matrix[start_node][start_node] = -sum_of_qs # A Simple Test # s1 = sp.SamplePath() s1.build_trajectories() print(s1.get_number_trajectories()) g1 = dg.DynamicGraph(s1) g1.build_graph() print(g1.graph) #print(g1.states_number) Q = RateMatrix(g1, g1.states_number) #print(Q.matrix) Q.build_matrix() print(Q.matrix) non_zero_values = 0 val = 0.0 for coeff in Q.matrix[0][1:]: if(coeff != 0): non_zero_values += 1 val += coeff print(non_zero_values == len(Q.graph.graph["222"]["Arcs"].keys()))