import json import typing import pandas as pd import numpy as np import sys sys.path.append('../') import utility.abstract_importer as ai class SampleImporter(ai.AbstractImporter): #TODO: Scrivere documentazione """Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare the data in json extension. :param file_path: the path of the file that contains tha data to be imported :type file_path: string :param samples_label: the reference key for the samples in the trajectories :type samples_label: string :param structure_label: the reference key for the structure of the network data :type structure_label: string :param variables_label: the reference key for the cardinalites of the nodes data :type variables_label: string :param time_key: the key used to identify the timestamps in each trajectory :type time_key: string :param variables_key: the key used to identify the names of the variables in the net :type variables_key: string :_array_indx: the index of the outer JsonArray to extract the data from :type _array_indx: int :_df_samples_list: a Dataframe list in which every dataframe contains a trajectory :_raw_data: The raw contents of the json file to import :type _raw_data: List """ def __init__(self, trajectory_list: typing.Union[pd.DataFrame, np.ndarray] = None, variables: pd.DataFrame = None, prior_net_structure: pd.DataFrame = None): super(SampleImporter, self).__init__(trajectory_list =trajectory_list, variables= variables, prior_net_structure=prior_net_structure) def import_data(self, header_column = None): if header_column is None: self._sorter = header_column else: self._sorter = self.build_sorter(self._df_samples_list[0]) samples_list= self._df_samples_list if isinstance(samples_list, np.ndarray): samples_list = samples_list.tolist() self.compute_row_delta_in_all_samples_frames(samples_list) def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List: """Implements the abstract method build_sorter of the :class:`AbstractImporter` for this dataset. """ columns_header = list(sample_frame.columns.values) del columns_header[0] return columns_header def dataset_id(self) -> object: pass