import sys sys.path.append('../') import numpy as np import pandas as pd import .abstract_sample_path as asam import ..utility.json_importer as imp from .structure import Structure from .trajectory import Trajectory import ..utility.abstract_importer as ai class SamplePath(object): """Aggregates all the informations about the trajectories, the real structure of the sampled net and variables cardinalites. Has the task of creating the objects ``Trajectory`` and ``Structure`` that will contain the mentioned data. :param importer: the Importer object which contains the imported and processed data :type importer: AbstractImporter :_trajectories: the ``Trajectory`` object that will contain all the concatenated trajectories :_structure: the ``Structure`` Object that will contain all the structural infos about the net :_total_variables_count: the number of variables in the net """ def __init__(self, importer: ai.AbstractImporter): """Constructor Method """ self._importer = importer if self._importer._df_variables is None or self._importer._concatenated_samples is None: raise RuntimeError('The importer object has to contain the all processed data!') if self._importer._df_variables.empty: raise RuntimeError('The importer object has to contain the all processed data!') if isinstance(self._importer._concatenated_samples, pd.DataFrame): if self._importer._concatenated_samples.empty: raise RuntimeError('The importer object has to contain the all processed data!') if isinstance(self._importer._concatenated_samples, np.ndarray): if self._importer._concatenated_samples.size == 0: raise RuntimeError('The importer object has to contain the all processed data!') self._trajectories = None self._structure = None self._total_variables_count = None def build_trajectories(self) -> None: """Builds the Trajectory object that will contain all the trajectories. Clears all the unused dataframes in ``_importer`` Object """ self._trajectories = \ Trajectory(self._importer.build_list_of_samples_array(self._importer.concatenated_samples), len(self._importer.sorter) + 1) self._importer.clear_concatenated_frame() def build_structure(self) -> None: """ Builds the ``Structure`` object that aggregates all the infos about the net. """ if self._importer.sorter != self._importer.variables.iloc[:, 0].to_list(): raise RuntimeError("The Dataset columns order have to match the order of labels in the variables Frame!") self._total_variables_count = len(self._importer.sorter) labels = self._importer.variables.iloc[:, 0].to_list() indxs = self._importer.variables.index.to_numpy() vals = self._importer.variables.iloc[:, 1].to_numpy() if self._importer.structure is None or self._importer.structure.empty: edges = [] else: edges = list(self._importer.structure.to_records(index=False)) self._structure = Structure(labels, indxs, vals, edges, self._total_variables_count) def clear_memory(self): self._importer._raw_data = [] @property def trajectories(self) -> Trajectory: return self._trajectories @property def structure(self) -> Structure: return self._structure @property def total_variables_count(self) -> int: return self._total_variables_count @property def has_prior_net_structure(self) -> bool: return bool(self._structure.edges)