import numpy as np import sets_of_cims_container as acims import set_of_cims as sofc import sample_path as sp import network_graph as ng class ParametersEstimator: """ Has the task of computing the cims of particular node given the trajectories in samplepath and the net structure in the graph net_graph :sample_path: the container of the trajectories :net_graph: the net structure :single_srt_of_cims: the set of cims object that will hold the cims of the node """ def __init__(self, sample_path: sp.SamplePath, net_graph: ng.NetworkGraph): self.sample_path = sample_path self.net_graph = net_graph self.sets_of_cims_struct = None self.single_set_of_cims = None def init_sets_cims_container(self): self.sets_of_cims_struct = acims.SetsOfCimsContainer(self.net_graph.nodes, self.net_graph.nodes_values, self.net_graph.get_ordered_by_indx_parents_values_for_all_nodes(), self.net_graph.p_combs) def fast_init(self, node_id: str): """ Initializes all the necessary structures for the parameters estimation. Parameters: node_id: the node label Returns: void """ p_vals = self.net_graph.aggregated_info_about_nodes_parents[2] node_states_number = self.net_graph.get_states_number(node_id) self.single_set_of_cims = sofc.SetOfCims(node_id, p_vals, node_states_number, self.net_graph.p_combs) def compute_parameters(self): #print(self.net_graph.get_nodes()) #print(self.amalgamated_cims_struct.sets_of_cims) #enumerate(zip(self.net_graph.get_nodes(), self.amalgamated_cims_struct.sets_of_cims)) for indx, aggr in enumerate(zip(self.net_graph.nodes, self.sets_of_cims_struct.sets_of_cims)): #print(self.net_graph.time_filtering[indx]) #print(self.net_graph.time_scalar_indexing_strucure[indx]) self.compute_state_res_time_for_node(self.net_graph.get_node_indx(aggr[0]), self.sample_path.trajectories.times, self.sample_path.trajectories.trajectory, self.net_graph.time_filtering[indx], self.net_graph.time_scalar_indexing_strucure[indx], aggr[1].state_residence_times) #print(self.net_graph.transition_filtering[indx]) #print(self.net_graph.transition_scalar_indexing_structure[indx]) self.compute_state_transitions_for_a_node(self.net_graph.get_node_indx(aggr[0]), self.sample_path.trajectories.complete_trajectory, self.net_graph.transition_filtering[indx], self.net_graph.transition_scalar_indexing_structure[indx], aggr[1].transition_matrices) aggr[1].build_cims(aggr[1].state_residence_times, aggr[1].transition_matrices) def compute_parameters_for_node(self, node_id: str) -> sofc.SetOfCims: """ Compute the CIMS of the node identified by the label node_id Parameters: node_id: the node label Returns: A setOfCims object filled with the computed CIMS """ node_indx = self.net_graph.get_node_indx(node_id) state_res_times = self.single_set_of_cims.state_residence_times transition_matrices = self.single_set_of_cims.transition_matrices trajectory = self.sample_path.trajectories.trajectory self.compute_state_res_time_for_node(node_indx, self.sample_path.trajectories.times, trajectory, self.net_graph.time_filtering, self.net_graph.time_scalar_indexing_strucure, state_res_times) self.compute_state_transitions_for_a_node(node_indx, self.sample_path.trajectories.complete_trajectory, self.net_graph.transition_filtering, self.net_graph.transition_scalar_indexing_structure, transition_matrices) self.single_set_of_cims.build_cims(state_res_times, transition_matrices) return self.single_set_of_cims def compute_state_res_time_for_node(self, node_indx: int, times: np.ndarray, trajectory: np.ndarray, cols_filter: np.ndarray, scalar_indexes_struct: np.ndarray, T: np.ndarray): """ Compute the state residence times for a node and fill the matrix T with the results Parameters: node_indx: the index of the node times: the times deltas vector trajectory: the trajectory cols_filter: the columns filtering structure scalar_indexes_struct: the indexing structure T: the state residence times vectors Returns: void """ T[:] = np.bincount(np.sum(trajectory[:, cols_filter] * scalar_indexes_struct / scalar_indexes_struct[0], axis=1) .astype(np.int), \ times, minlength=scalar_indexes_struct[-1]).reshape(-1, T.shape[1]) def compute_state_transitions_for_a_node(self, node_indx, trajectory, cols_filter, scalar_indexing, M): """ Compute the state residence times for a node and fill the matrices M with the results Parameters: node_indx: the index of the node times: the times deltas vector trajectory: the trajectory cols_filter: the columns filtering structure scalar_indexes: the indexing structure M: the state transition matrices Returns: void """ diag_indices = np.array([x * M.shape[1] + x % M.shape[1] for x in range(M.shape[0] * M.shape[1])], dtype=np.int64) trj_tmp = trajectory[trajectory[:, int(trajectory.shape[1] / 2) + node_indx].astype(np.int) >= 0] M[:] = np.bincount(np.sum(trj_tmp[:, cols_filter] * scalar_indexing / scalar_indexing[0], axis=1).astype(np.int), minlength=scalar_indexing[-1]).reshape(-1, M.shape[1], M.shape[2]) M_raveled = M.ravel() M_raveled[diag_indices] = 0 M_raveled[diag_indices] = np.sum(M, axis=2).ravel()