abstract_importer module¶
-
class
abstract_importer.
AbstractImporter
(file_path: str)¶ Bases:
abc.ABC
Abstract class that exposes all the necessary methods to process the trajectories and the net structure.
- Parameters
file_path (str) – the file path
- _concatenated_samples
Dataframe containing the concatenation of all the processed trajectories
- _df_structure
Dataframe containing the structure of the network (edges)
- _df_variables
Dataframe containing the nodes cardinalities
- _sorter
A list containing the columns header (excluding the time column) of the _concatenated_samples
-
build_list_of_samples_array
(data_frame: pandas.core.frame.DataFrame) → List¶ Builds a List containing the columns of data_frame and converts them to a numpy array.
- Parameters
data_frame (pandas.Dataframe) – the dataframe from which the columns have to be extracted and converted
- Returns
the resulting list of numpy arrays
- Return type
List
-
abstract
build_sorter
(sample_frame: pandas.core.frame.DataFrame) → List¶ Initializes the
_sorter
class member from a trajectory dataframe, exctracting the header of the frame and keeping ONLY the variables symbolic labels, cutting out the time label in the header.- Parameters
sample_frame (pandas.DataFrame) – The dataframe from which extract the header
- Returns
A list containing the processed header.
- Return type
List
-
clear_concatenated_frame
() → None¶ Removes all values in the dataframe concatenated_samples.
-
compute_row_delta_in_all_samples_frames
(df_samples_list: List) → None¶ Calls the method
compute_row_delta_sigle_samples_frame
on every dataframe present in the listdf_samples_list
. Concatenates the result in the dataframeconcatanated_samples
- Parameters
df_samples_list (List) – the datframe’s list to be processed and concatenated
Warning
The Dataframe sample_frame has to follow the column structure of this header: Header of sample_frame = [Time | Variable values] The class member self._sorter HAS to be properly INITIALIZED (See class members definition doc)
Note
After the call of this method the class member
concatanated_samples
will contain all processed and merged trajectories
-
compute_row_delta_sigle_samples_frame
(sample_frame: pandas.core.frame.DataFrame, columns_header: List, shifted_cols_header: List) → pandas.core.frame.DataFrame¶ Computes the difference between each value present in th time column. Copies and shift by one position up all the values present in the remaining columns.
- Parameters
sample_frame (pandas.Dataframe) – the traj to be processed
columns_header (List) – the original header of sample_frame
shifted_cols_header (List) – a copy of columns_header with changed names of the contents
- Returns
The processed dataframe
- Return type
pandas.Dataframe
Warning
the Dataframe
sample_frame
has to follow the column structure of this header: Header of sample_frame = [Time | Variable values]
-
property
concatenated_samples
¶
-
abstract
dataset_id
() → object¶ If the original dataset contains multiple dataset, this method returns a unique id to identify the current dataset
-
property
file_path
¶
-
abstract
import_data
() → None¶ Imports all the trajectories, variables cardinalities, and net edges.
Warning
The class members
_df_variables
and_df_structure
HAVE to be properly constructed as Pandas Dataframes with the following structure: Header of _df_structure = [From_Node | To_Node] Header of _df_variables = [Variable_Label | Variable_Cardinality]Note
See :class:
JsonImporter
for an example of implementation of this method.
-
property
sorter
¶
-
property
structure
¶
-
property
variables
¶