import sys sys.path.append('../') import itertools import json import typing import networkx as nx import numpy as np from networkx.readwrite import json_graph from random import choice,sample from abc import ABC from optimizers.optimizer import Optimizer from estimators import structure_estimator as se import structure_graph.network_graph as ng import queue class TabuSearch(Optimizer): """ Optimizer class that implement Hill Climbing Search """ def __init__(self, node_id:str, structure_estimator: se.StructureEstimator, max_parents:int = None, iterations_number:int= 40, patience:int = None, tabu_length:int = None, tabu_rules_duration = None ): """ Compute Optimization process for a structure_estimator Parameters: max_parents: maximum number of parents for each variable. If None, disabled iterations_number: maximum number of optimization algorithm's iteration patience: number of iteration without any improvement before to stop the search.If None, disabled tabu_length: maximum lenght of the data structures used in the optimization process tabu_rules_duration: number of iterations in which each rule keeps its value """ super().__init__(node_id, structure_estimator) self.max_parents = max_parents self.iterations_number = iterations_number self.patience = patience self.tabu_length = tabu_length self.tabu_rules_duration = tabu_rules_duration def optimize_structure(self) -> typing.List: """ Compute Optimization process for a structure_estimator Parameters: Returns: the estimated structure for the node """ print(f"tabu search is processing the structure of {self.node_id}") #'Create the graph for the single node' graph = ng.NetworkGraph(self.structure_estimator.sample_path.structure) other_nodes = set([node for node in self.structure_estimator.sample_path.structure.nodes_labels if node != self.node_id]) actual_best_score = self.structure_estimator.get_score_from_graph(graph,self.node_id) 'initialize tabu_length and tabu_rules_duration if None' if self.tabu_length is None: self.tabu_length = len(other_nodes) if self.tabu_rules_duration is None: self.tabu_tabu_rules_durationength = len(other_nodes) tabu_set = set() tabu_queue = queue.Queue() patince_count = 0 tabu_count = 0 for i in range(self.iterations_number): current_possible_nodes = other_nodes.difference(tabu_set) 'choose a new random edge according to tabu restiction' if(len(current_possible_nodes) > 0): current_new_parent = sample(current_possible_nodes,k=1)[0] else: current_new_parent = tabu_queue.get() tabu_set.remove(current_new_parent) current_edge = (current_new_parent,self.node_id) added = False parent_removed = None if graph.has_edge(current_edge): graph.remove_edges([current_edge]) else: 'check the max_parents constraint' if self.max_parents is not None: parents_list = graph.get_parents_by_id(self.node_id) if len(parents_list) >= self.max_parents : parent_removed = (choice(parents_list), self.node_id) graph.remove_edges([parent_removed]) graph.add_edges([current_edge]) added = True #print('**************************') current_score = self.structure_estimator.get_score_from_graph(graph,self.node_id) # print("-------------------------------------------") # print(f"Current new parent: {current_new_parent}") # print(f"Current score: {current_score}") # print(f"Current best score: {actual_best_score}") # print(f"tabu list : {str(tabu_set)} length: {len(tabu_set)}") # print(f"tabu queue : {str(tabu_queue)} length: {tabu_queue.qsize()}") # print(f"graph edges: {graph.edges}") # print("-------------------------------------------") # input() if current_score > actual_best_score: 'update current best score' actual_best_score = current_score patince_count = 0 'update tabu list' else: 'undo the last update' if added: graph.remove_edges([current_edge]) 'If a parent was removed, add it again to the graph' if parent_removed is not None: graph.add_edges([parent_removed]) else: graph.add_edges([current_edge]) 'update patience count' patince_count += 1 tabu_count += 1 if tabu_queue.qsize() >= self.tabu_length: current_removed = tabu_queue.get() tabu_set.remove(current_removed) 'Add the node on the tabu list' tabu_queue.put(current_new_parent) tabu_set.add(current_new_parent) if tabu_count % self.tabu_rules_duration == 0: if tabu_queue.qsize() > 0: current_removed = tabu_queue.get() tabu_set.remove(current_removed) tabu_count = 0 else: tabu_count = 0 if self.patience is not None and patince_count > self.patience: break print(f"finito variabile: {self.node_id}") return graph.edges