-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs-out/_build/html/searchindex.js b/docs-out/_build/html/searchindex.js
deleted file mode 100644
index 70f998c..0000000
--- a/docs-out/_build/html/searchindex.js
+++ /dev/null
@@ -1 +0,0 @@
-Search.setIndex({docnames:["PyCTBN","PyCTBN.PyCTBN","PyCTBN.PyCTBN.estimators","PyCTBN.PyCTBN.optimizers","PyCTBN.PyCTBN.structure_graph","PyCTBN.PyCTBN.utility","PyCTBN.tests","PyCTBN.tests.estimators","PyCTBN.tests.optimizers","PyCTBN.tests.structure_graph","PyCTBN.tests.utility","basic_main","example","examples","index","modules","setup"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,sphinx:56},filenames:["PyCTBN.rst","PyCTBN.PyCTBN.rst","PyCTBN.PyCTBN.estimators.rst","PyCTBN.PyCTBN.optimizers.rst","PyCTBN.PyCTBN.structure_graph.rst","PyCTBN.PyCTBN.utility.rst","PyCTBN.tests.rst","PyCTBN.tests.estimators.rst","PyCTBN.tests.optimizers.rst","PyCTBN.tests.structure_graph.rst","PyCTBN.tests.utility.rst","basic_main.rst","example.rst","examples.rst","index.rst","modules.rst","setup.rst"],objects:{"":{PyCTBN:[0,0,0,"-"]},"PyCTBN.PyCTBN":{estimators:[2,0,0,"-"],optimizers:[3,0,0,"-"],structure_graph:[4,0,0,"-"],utility:[5,0,0,"-"]},"PyCTBN.PyCTBN.estimators":{fam_score_calculator:[2,0,0,"-"],parameters_estimator:[2,0,0,"-"],structure_constraint_based_estimator:[2,0,0,"-"],structure_estimator:[2,0,0,"-"],structure_score_based_estimator:[2,0,0,"-"]},"PyCTBN.PyCTBN.estimators.fam_score_calculator":{FamScoreCalculator:[2,1,1,""]},"PyCTBN.PyCTBN.estimators.fam_score_calculator.FamScoreCalculator":{get_fam_score:[2,2,1,""],marginal_likelihood_q:[2,2,1,""],marginal_likelihood_theta:[2,2,1,""],single_cim_xu_marginal_likelihood_q:[2,2,1,""],single_cim_xu_marginal_likelihood_theta:[2,2,1,""],single_internal_cim_xxu_marginal_likelihood_theta:[2,2,1,""],variable_cim_xu_marginal_likelihood_q:[2,2,1,""],variable_cim_xu_marginal_likelihood_theta:[2,2,1,""]},"PyCTBN.PyCTBN.estimators.parameters_estimator":{ParametersEstimator:[2,1,1,""]},"PyCTBN.PyCTBN.estimators.parameters_estimator.ParametersEstimator":{compute_parameters_for_node:[2,2,1,""],compute_state_res_time_for_node:[2,2,1,""],compute_state_transitions_for_a_node:[2,2,1,""],fast_init:[2,2,1,""]},"PyCTBN.PyCTBN.estimators.structure_constraint_based_estimator":{StructureConstraintBasedEstimator:[2,1,1,""]},"PyCTBN.PyCTBN.estimators.structure_constraint_based_estimator.StructureConstraintBasedEstimator":{complete_test:[2,2,1,""],compute_thumb_value:[2,2,1,""],ctpc_algorithm:[2,2,1,""],estimate_structure:[2,2,1,""],independence_test:[2,2,1,""],one_iteration_of_CTPC_algorithm:[2,2,1,""]},"PyCTBN.PyCTBN.estimators.structure_estimator":{StructureEstimator:[2,1,1,""]},"PyCTBN.PyCTBN.estimators.structure_estimator.StructureEstimator":{adjacency_matrix:[2,2,1,""],build_complete_graph:[2,2,1,""],build_removable_edges_matrix:[2,2,1,""],estimate_structure:[2,2,1,""],generate_possible_sub_sets_of_size:[2,2,1,""],save_plot_estimated_structure_graph:[2,2,1,""],save_results:[2,2,1,""],spurious_edges:[2,2,1,""]},"PyCTBN.PyCTBN.estimators.structure_score_based_estimator":{StructureScoreBasedEstimator:[2,1,1,""]},"PyCTBN.PyCTBN.estimators.structure_score_based_estimator.StructureScoreBasedEstimator":{estimate_parents:[2,2,1,""],estimate_structure:[2,2,1,""],get_score_from_graph:[2,2,1,""]},"PyCTBN.PyCTBN.optimizers":{constraint_based_optimizer:[3,0,0,"-"],hill_climbing_search:[3,0,0,"-"],optimizer:[3,0,0,"-"],tabu_search:[3,0,0,"-"]},"PyCTBN.PyCTBN.optimizers.constraint_based_optimizer":{ConstraintBasedOptimizer:[3,1,1,""]},"PyCTBN.PyCTBN.optimizers.constraint_based_optimizer.ConstraintBasedOptimizer":{optimize_structure:[3,2,1,""]},"PyCTBN.PyCTBN.optimizers.hill_climbing_search":{HillClimbing:[3,1,1,""]},"PyCTBN.PyCTBN.optimizers.hill_climbing_search.HillClimbing":{optimize_structure:[3,2,1,""]},"PyCTBN.PyCTBN.optimizers.optimizer":{Optimizer:[3,1,1,""]},"PyCTBN.PyCTBN.optimizers.optimizer.Optimizer":{optimize_structure:[3,2,1,""]},"PyCTBN.PyCTBN.optimizers.tabu_search":{TabuSearch:[3,1,1,""]},"PyCTBN.PyCTBN.optimizers.tabu_search.TabuSearch":{optimize_structure:[3,2,1,""]},"PyCTBN.PyCTBN.structure_graph":{conditional_intensity_matrix:[4,0,0,"-"],network_generator:[4,0,0,"-"],network_graph:[4,0,0,"-"],sample_path:[4,0,0,"-"],set_of_cims:[4,0,0,"-"],structure:[4,0,0,"-"],trajectory:[4,0,0,"-"],trajectory_generator:[4,0,0,"-"]},"PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix":{ConditionalIntensityMatrix:[4,1,1,""]},"PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix":{cim:[4,2,1,""],compute_cim_coefficients:[4,2,1,""],state_residence_times:[4,2,1,""],state_transition_matrix:[4,2,1,""]},"PyCTBN.PyCTBN.structure_graph.network_generator":{NetworkGenerator:[4,1,1,""]},"PyCTBN.PyCTBN.structure_graph.network_generator.NetworkGenerator":{cims:[4,2,1,""],dyn_str:[4,2,1,""],generate_cims:[4,2,1,""],generate_graph:[4,2,1,""],graph:[4,2,1,""],variables:[4,2,1,""]},"PyCTBN.PyCTBN.structure_graph.network_graph":{NetworkGraph:[4,1,1,""]},"PyCTBN.PyCTBN.structure_graph.network_graph.NetworkGraph":{add_edges:[4,2,1,""],add_nodes:[4,2,1,""],build_p_comb_structure_for_a_node:[4,2,1,""],build_time_columns_filtering_for_a_node:[4,2,1,""],build_time_scalar_indexing_structure_for_a_node:[4,2,1,""],build_transition_filtering_for_a_node:[4,2,1,""],build_transition_scalar_indexing_structure_for_a_node:[4,2,1,""],clear_indexing_filtering_structures:[4,2,1,""],edges:[4,2,1,""],fast_init:[4,2,1,""],get_node_indx:[4,2,1,""],get_ordered_by_indx_set_of_parents:[4,2,1,""],get_parents_by_id:[4,2,1,""],get_positional_node_indx:[4,2,1,""],get_states_number:[4,2,1,""],has_edge:[4,2,1,""],nodes:[4,2,1,""],nodes_indexes:[4,2,1,""],nodes_values:[4,2,1,""],p_combs:[4,2,1,""],remove_edges:[4,2,1,""],remove_node:[4,2,1,""],time_filtering:[4,2,1,""],time_scalar_indexing_strucure:[4,2,1,""],transition_filtering:[4,2,1,""],transition_scalar_indexing_structure:[4,2,1,""]},"PyCTBN.PyCTBN.structure_graph.sample_path":{SamplePath:[4,1,1,""]},"PyCTBN.PyCTBN.structure_graph.sample_path.SamplePath":{build_structure:[4,2,1,""],build_trajectories:[4,2,1,""],clear_memory:[4,2,1,""],has_prior_net_structure:[4,2,1,""],structure:[4,2,1,""],total_variables_count:[4,2,1,""],trajectories:[4,2,1,""]},"PyCTBN.PyCTBN.structure_graph.set_of_cims":{SetOfCims:[4,1,1,""]},"PyCTBN.PyCTBN.structure_graph.set_of_cims.SetOfCims":{actual_cims:[4,2,1,""],build_cims:[4,2,1,""],build_times_and_transitions_structures:[4,2,1,""],filter_cims_with_mask:[4,2,1,""],get_cims_number:[4,2,1,""],p_combs:[4,2,1,""]},"PyCTBN.PyCTBN.structure_graph.structure":{Structure:[4,1,1,""]},"PyCTBN.PyCTBN.structure_graph.structure.Structure":{add_edge:[4,2,1,""],clean_structure_edges:[4,2,1,""],contains_edge:[4,2,1,""],edges:[4,2,1,""],get_node_id:[4,2,1,""],get_node_indx:[4,2,1,""],get_positional_node_indx:[4,2,1,""],get_states_number:[4,2,1,""],nodes_indexes:[4,2,1,""],nodes_labels:[4,2,1,""],nodes_values:[4,2,1,""],remove_edge:[4,2,1,""],remove_node:[4,2,1,""],total_variables_number:[4,2,1,""]},"PyCTBN.PyCTBN.structure_graph.trajectory":{Trajectory:[4,1,1,""]},"PyCTBN.PyCTBN.structure_graph.trajectory.Trajectory":{complete_trajectory:[4,2,1,""],size:[4,2,1,""],times:[4,2,1,""],trajectory:[4,2,1,""]},"PyCTBN.PyCTBN.structure_graph.trajectory_generator":{TrajectoryGenerator:[4,1,1,""]},"PyCTBN.PyCTBN.structure_graph.trajectory_generator.TrajectoryGenerator":{CTBN_Sample:[4,2,1,""],multi_trajectory:[4,2,1,""],worker:[4,2,1,""]},"PyCTBN.PyCTBN.utility":{abstract_exporter:[5,0,0,"-"],abstract_importer:[5,0,0,"-"],cache:[5,0,0,"-"],json_exporter:[5,0,0,"-"],json_importer:[5,0,0,"-"],sample_importer:[5,0,0,"-"]},"PyCTBN.PyCTBN.utility.abstract_exporter":{AbstractExporter:[5,1,1,""]},"PyCTBN.PyCTBN.utility.abstract_exporter.AbstractExporter":{add_trajectory:[5,2,1,""],out_file:[5,2,1,""]},"PyCTBN.PyCTBN.utility.abstract_importer":{AbstractImporter:[5,1,1,""]},"PyCTBN.PyCTBN.utility.abstract_importer.AbstractImporter":{build_list_of_samples_array:[5,2,1,""],build_sorter:[5,2,1,""],clear_concatenated_frame:[5,2,1,""],compute_row_delta_in_all_samples_frames:[5,2,1,""],compute_row_delta_sigle_samples_frame:[5,2,1,""],concatenated_samples:[5,2,1,""],dataset_id:[5,2,1,""],file_path:[5,2,1,""],sorter:[5,2,1,""],structure:[5,2,1,""],variables:[5,2,1,""]},"PyCTBN.PyCTBN.utility.cache":{Cache:[5,1,1,""]},"PyCTBN.PyCTBN.utility.cache.Cache":{clear:[5,2,1,""],find:[5,2,1,""],put:[5,2,1,""]},"PyCTBN.PyCTBN.utility.json_exporter":{JsonExporter:[5,1,1,""]},"PyCTBN.PyCTBN.utility.json_exporter.JsonExporter":{cims_to_json:[5,2,1,""],out_file:[5,2,1,""]},"PyCTBN.PyCTBN.utility.json_importer":{JsonImporter:[5,1,1,""]},"PyCTBN.PyCTBN.utility.json_importer.JsonImporter":{build_sorter:[5,2,1,""],clear_data_frame_list:[5,2,1,""],dataset_id:[5,2,1,""],import_data:[5,2,1,""],import_sampled_cims:[5,2,1,""],import_structure:[5,2,1,""],import_trajectories:[5,2,1,""],import_variables:[5,2,1,""],normalize_trajectories:[5,2,1,""],one_level_normalizing:[5,2,1,""],read_json_file:[5,2,1,""]},"PyCTBN.PyCTBN.utility.sample_importer":{SampleImporter:[5,1,1,""]},"PyCTBN.PyCTBN.utility.sample_importer.SampleImporter":{build_sorter:[5,2,1,""],dataset_id:[5,2,1,""],import_data:[5,2,1,""]},"PyCTBN.tests":{estimators:[7,0,0,"-"],optimizers:[8,0,0,"-"],structure_graph:[9,0,0,"-"],utility:[10,0,0,"-"]},"PyCTBN.tests.estimators":{test_parameters_estimator:[7,0,0,"-"],test_structure_constraint_based_estimator:[7,0,0,"-"],test_structure_estimator:[7,0,0,"-"],test_structure_score_based_estimator:[7,0,0,"-"]},"PyCTBN.tests.estimators.test_parameters_estimator":{TestParametersEstimatior:[7,1,1,""]},"PyCTBN.tests.estimators.test_parameters_estimator.TestParametersEstimatior":{aux_import_sampled_cims:[7,2,1,""],cim_equality_test:[7,2,1,""],equality_of_cims_of_node:[7,2,1,""],setUpClass:[7,2,1,""],test_compute_parameters_for_node:[7,2,1,""],test_fast_init:[7,2,1,""]},"PyCTBN.tests.estimators.test_structure_constraint_based_estimator":{TestStructureConstraintBasedEstimator:[7,1,1,""]},"PyCTBN.tests.estimators.test_structure_constraint_based_estimator.TestStructureConstraintBasedEstimator":{setUpClass:[7,2,1,""],test_structure_1:[7,2,1,""],test_structure_2:[7,2,1,""],test_structure_3:[7,2,1,""]},"PyCTBN.tests.estimators.test_structure_estimator":{TestStructureEstimator:[7,1,1,""]},"PyCTBN.tests.estimators.test_structure_estimator.TestStructureEstimator":{setUpClass:[7,2,1,""],test_adjacency_matrix:[7,2,1,""],test_build_complete_graph:[7,2,1,""],test_build_removable_edges_matrix:[7,2,1,""],test_generate_possible_sub_sets_of_size:[7,2,1,""],test_init:[7,2,1,""],test_save_plot_estimated_graph:[7,2,1,""],test_save_results:[7,2,1,""],test_time:[7,2,1,""]},"PyCTBN.tests.estimators.test_structure_score_based_estimator":{TestStructureScoreBasedEstimator:[7,1,1,""]},"PyCTBN.tests.estimators.test_structure_score_based_estimator.TestStructureScoreBasedEstimator":{setUpClass:[7,2,1,""],test_structure_1:[7,2,1,""],test_structure_2:[7,2,1,""],test_structure_3:[7,2,1,""],test_structure_monoprocesso:[7,2,1,""]},"PyCTBN.tests.optimizers":{test_hill_climbing_search:[8,0,0,"-"],test_tabu_search:[8,0,0,"-"]},"PyCTBN.tests.optimizers.test_hill_climbing_search":{TestHillClimbingSearch:[8,1,1,""]},"PyCTBN.tests.optimizers.test_hill_climbing_search.TestHillClimbingSearch":{setUpClass:[8,2,1,""],test_structure:[8,2,1,""],test_structure_3:[8,2,1,""]},"PyCTBN.tests.optimizers.test_tabu_search":{TestTabuSearch:[8,1,1,""]},"PyCTBN.tests.optimizers.test_tabu_search.TestTabuSearch":{setUpClass:[8,2,1,""],test_structure:[8,2,1,""],test_structure_3:[8,2,1,""]},"PyCTBN.tests.structure_graph":{test_cim:[9,0,0,"-"],test_networkgenerator:[9,0,0,"-"],test_networkgraph:[9,0,0,"-"],test_sample_path:[9,0,0,"-"],test_setofcims:[9,0,0,"-"],test_structure:[9,0,0,"-"],test_trajectory:[9,0,0,"-"],test_trajectorygenerator:[9,0,0,"-"]},"PyCTBN.tests.structure_graph.test_cim":{TestConditionalIntensityMatrix:[9,1,1,""]},"PyCTBN.tests.structure_graph.test_cim.TestConditionalIntensityMatrix":{setUpClass:[9,2,1,""],test_compute_cim_coefficients:[9,2,1,""],test_init:[9,2,1,""],test_repr:[9,2,1,""]},"PyCTBN.tests.structure_graph.test_networkgenerator":{TestNetworkGenerator:[9,1,1,""]},"PyCTBN.tests.structure_graph.test_networkgenerator.TestNetworkGenerator":{test_generate_cims:[9,2,1,""],test_generate_graph:[9,2,1,""]},"PyCTBN.tests.structure_graph.test_networkgraph":{TestNetworkGraph:[9,1,1,""]},"PyCTBN.tests.structure_graph.test_networkgraph.TestNetworkGraph":{aux_build_p_combs_structure:[9,2,1,""],aux_build_time_columns_filtering_structure_for_a_node:[9,2,1,""],aux_build_time_scalar_indexing_structure_for_a_node:[9,2,1,""],aux_build_transition_columns_filtering_structure:[9,2,1,""],aux_build_transition_scalar_indexing_structure_for_a_node:[9,2,1,""],setUpClass:[9,2,1,""],test_add_edges:[9,2,1,""],test_add_nodes:[9,2,1,""],test_build_p_combs_structure:[9,2,1,""],test_build_time_columns_filtering_structure_for_a_node:[9,2,1,""],test_build_time_scalar_indexing_structure_for_a_node:[9,2,1,""],test_build_transition_columns_filtering_structure:[9,2,1,""],test_build_transition_scalar_indexing_structure_for_a_node:[9,2,1,""],test_fast_init:[9,2,1,""],test_get_node_indx:[9,2,1,""],test_get_ordered_by_indx_set_of_parents:[9,2,1,""],test_get_parents_by_id:[9,2,1,""],test_get_states_number:[9,2,1,""],test_init:[9,2,1,""]},"PyCTBN.tests.structure_graph.test_sample_path":{TestSamplePath:[9,1,1,""]},"PyCTBN.tests.structure_graph.test_sample_path.TestSamplePath":{setUpClass:[9,2,1,""],test_buid_samplepath_no_concatenated_samples:[9,2,1,""],test_buid_samplepath_no_variables:[9,2,1,""],test_build_saplepath_no_prior_net_structure:[9,2,1,""],test_build_structure:[9,2,1,""],test_build_structure_bad_sorter:[9,2,1,""],test_build_trajectories:[9,2,1,""],test_init:[9,2,1,""],test_init_not_filled_dataframse:[9,2,1,""],test_init_not_initialized_importer:[9,2,1,""]},"PyCTBN.tests.structure_graph.test_setofcims":{TestSetOfCims:[9,1,1,""]},"PyCTBN.tests.structure_graph.test_setofcims.TestSetOfCims":{another_filtering_method:[9,2,1,""],aux_test_build_cims:[9,2,1,""],aux_test_init:[9,2,1,""],build_p_comb_structure_for_a_node:[9,2,1,""],setUpClass:[9,2,1,""],test_build_cims:[9,2,1,""],test_filter_cims_with_mask:[9,2,1,""],test_init:[9,2,1,""]},"PyCTBN.tests.structure_graph.test_structure":{TestStructure:[9,1,1,""]},"PyCTBN.tests.structure_graph.test_structure.TestStructure":{setUpClass:[9,2,1,""],test_edges_operations:[9,2,1,""],test_equality:[9,2,1,""],test_get_node_id:[9,2,1,""],test_get_node_indx:[9,2,1,""],test_get_positional_node_indx:[9,2,1,""],test_get_states_number:[9,2,1,""],test_init:[9,2,1,""],test_repr:[9,2,1,""]},"PyCTBN.tests.structure_graph.test_trajectory":{TestTrajectory:[9,1,1,""]},"PyCTBN.tests.structure_graph.test_trajectory.TestTrajectory":{setUpClass:[9,2,1,""],test_init:[9,2,1,""]},"PyCTBN.tests.structure_graph.test_trajectorygenerator":{TestTrajectoryGenerator:[9,1,1,""]},"PyCTBN.tests.structure_graph.test_trajectorygenerator.TestTrajectoryGenerator":{setUpClass:[9,2,1,""],test_generated_trajectory:[9,2,1,""],test_generated_trajectory_max_tr:[9,2,1,""],test_init:[9,2,1,""],test_multi_trajectory:[9,2,1,""]},"PyCTBN.tests.utility":{test_cache:[10,0,0,"-"],test_json_importer:[10,0,0,"-"],test_sample_importer:[10,0,0,"-"]},"PyCTBN.tests.utility.test_cache":{TestCache:[10,1,1,""]},"PyCTBN.tests.utility.test_cache.TestCache":{test_clear:[10,2,1,""],test_find:[10,2,1,""],test_init:[10,2,1,""],test_put:[10,2,1,""]},"PyCTBN.tests.utility.test_json_importer":{TestJsonImporter:[10,1,1,""]},"PyCTBN.tests.utility.test_json_importer.TestJsonImporter":{ordered:[10,2,1,""],setUpClass:[10,2,1,""],test_build_sorter:[10,2,1,""],test_clear_concatenated_frame:[10,2,1,""],test_clear_data_frame_list:[10,2,1,""],test_compute_row_delta_in_all_frames:[10,2,1,""],test_compute_row_delta_in_all_frames_not_init_sorter:[10,2,1,""],test_compute_row_delta_single_samples_frame:[10,2,1,""],test_dataset_id:[10,2,1,""],test_file_path:[10,2,1,""],test_import_data:[10,2,1,""],test_import_sampled_cims:[10,2,1,""],test_import_structure:[10,2,1,""],test_import_variables:[10,2,1,""],test_init:[10,2,1,""],test_normalize_trajectories:[10,2,1,""],test_normalize_trajectories_wrong_indx:[10,2,1,""],test_normalize_trajectories_wrong_key:[10,2,1,""],test_read_json_file_found:[10,2,1,""],test_read_json_file_not_found:[10,2,1,""]},"PyCTBN.tests.utility.test_sample_importer":{TestSampleImporter:[10,1,1,""]},"PyCTBN.tests.utility.test_sample_importer.TestSampleImporter":{ordered:[10,2,1,""],setUpClass:[10,2,1,""],test_init:[10,2,1,""],test_order:[10,2,1,""]},PyCTBN:{PyCTBN:[1,0,0,"-"],tests:[6,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method"},terms:{"abstract":[2,3,4,5,13],"boolean":[2,4],"case":[4,7,8,9,10],"class":[2,3,4,5,7,8,9,10,13],"default":[2,3,5],"float":[2,4],"function":2,"import":[4,5,14],"int":[2,3,4,5],"new":5,"null":2,"return":[2,3,4,5,9,13],"static":[2,4],"super":13,"true":[2,13],"var":13,For:4,HAS:5,Has:[2,4],NOT:2,The:[2,4,5,13],Use:[2,13],__actual_cach:5,__generate_cim:4,__init__:13,__list_of_sets_of_par:5,_actual_cim:4,_actual_trajectori:4,_aggregated_info_about_nodes_par:4,_array_indx:5,_cach:2,_cim:4,_complete_graph:2,_df_samples_list:[5,13],_df_structur:5,_df_variabl:[5,13],_dyn_cim:5,_dyn_str:5,_file_path:13,_generated_trajectori:4,_graph:[4,13],_import:4,_indx:4,_label:4,_net_graph:2,_node:2,_node_id:4,_nodes_indx:2,_nodes_v:2,_p_combs_structur:4,_parent:4,_raw_data:5,_sample_path:2,_single_set_of_cim:2,_sorter:[5,13],_state_residence_tim:4,_structur:4,_structure_label:5,_time:4,_time_filt:4,_time_scalar_indexing_structur:4,_total_variables_count:4,_total_variables_numb:4,_trajectori:[4,5],_transition_filt:4,_transition_matric:4,_transition_scalar_indexing_structur:4,_val:4,_variabl:5,_variables_label:5,_vname:4,abc:[3,5],about:[3,4],abstract_export:[0,1,14],abstract_import:[0,1,4,14],abstractexport:5,abstractimport:[4,5,13],accord:4,act:5,actual:[2,4],actual_cim:[4,13],add:[4,5],add_edg:4,add_nod:4,add_trajectori:5,added:[2,4,5],adding:4,addit:2,adjac:[2,13],adjacency_matrix:[2,13],after:[4,5],against:2,aggreg:4,algorithm:[2,3,13],all:[2,3,4,5,9,13],allow:4,along:5,alpha_xu:2,alpha_xxu:2,alreadi:[5,13],also:[2,4],ani:[2,3],anoth:4,another_filtering_method:9,approach:2,arc:5,arrai:[2,4,5,13],assign:2,assum:2,automat:2,aux_build_p_combs_structur:9,aux_build_time_columns_filtering_structure_for_a_nod:9,aux_build_time_scalar_indexing_structure_for_a_nod:9,aux_build_transition_columns_filtering_structur:9,aux_build_transition_scalar_indexing_structure_for_a_nod:9,aux_import_sampled_cim:7,aux_test_build_cim:9,aux_test_init:9,axi:13,base:[2,3,4,5,7,8,9,10],basic_main:15,bayesian:2,been:4,befor:[2,3,7,8,9,10],belong:[2,4],best:2,between:[4,5],bool:[2,4],both:[2,5],bound:4,build:[2,4,5,9,13],build_cim:4,build_complete_graph:2,build_list_of_samples_arrai:5,build_p_comb_structure_for_a_nod:[4,9],build_removable_edges_matrix:2,build_sort:[5,13],build_structur:[4,13],build_time_columns_filtering_for_a_nod:4,build_time_scalar_indexing_structure_for_a_nod:4,build_times_and_transitions_structur:4,build_trajectori:[4,13],build_transition_filtering_for_a_nod:4,build_transition_scalar_indexing_structure_for_a_nod:4,built:2,cach:[0,1,2,14],calcul:2,call:[5,13],can:5,cardin:[2,4,5,9],cardinalit:[4,5],care:4,caridin:4,caridinalit:4,chang:[4,5],check:4,chi:2,chi_test:2,chi_test_alfa:2,child:[2,3],child_indx:2,child_states_numb:2,child_val:2,cim1:[2,7],cim2:[2,7],cim:[2,4,5,13],cim_equality_test:7,cims_kei:5,cims_label:[5,7],cims_to_json:5,classmethod:[7,8,9,10],clean_structure_edg:4,clear:[4,5],clear_concatenated_fram:5,clear_data_frame_list:5,clear_indexing_filtering_structur:4,clear_memori:4,climb:[2,3],coeffici:4,col:4,cols_filt:2,column:[2,4,5,13],columns_head:5,comb:4,combin:[4,5,9],combinatori:[4,9],common:2,complet:[2,4,5],complete_test:2,complete_trajectori:4,comput:[2,3,4,5,13],compute_cim_coeffici:4,compute_parameters_for_nod:[2,13],compute_row_delta_in_all_samples_fram:[5,13],compute_row_delta_sigle_samples_fram:5,compute_state_res_time_for_nod:2,compute_state_transitions_for_a_nod:2,compute_thumb_valu:2,concatanated_sampl:5,concaten:[4,5],concatenated_sampl:5,condit:4,conditional_intensity_matrix:[0,1,2,14],conditionalintensitymatrix:[2,4],consid:[2,4],consider:4,constraint:2,constraint_based_optim:[0,1,14],constraintbasedoptim:3,construct:[4,5,13],conta:5,contain:[2,4,5,9],contains_edg:4,content:[14,15],convent:4,convert:[2,5],copi:5,core:[4,5],correct:[4,5],correspond:4,could:2,count:4,creat:[2,4,5,13],csv:13,csvimport:13,ctbn:2,ctbn_sampl:4,ctpc:[2,3,13],ctpc_algorithm:[2,13],current:[2,3,5],cut:5,dafram:5,data:[2,3,4,5,14],datafram:[4,5,13],dataset:[3,4,5],dataset_id:[5,13],datfram:5,def:13,defin:[4,5],definit:5,defualt:2,delta:[2,4,5],demonstr:13,densiti:4,describ:5,desir:[2,4],df_samples_list:5,dict:[4,5,13],dictionari:5,differ:5,differt:2,digraph:2,dimens:4,dir:13,direct:[2,4],directli:5,directori:5,disabl:[2,3],disable_multiprocess:2,distribuit:2,doc:5,doubl:4,download:13,drop:13,duplic:4,dyn:13,dyn_cim:[4,5],dyn_str:[4,5],each:[2,3,4,5],edg:[2,4,5,13],edges_list:4,end:[4,5],entir:2,equal:4,equality_of_cims_of_nod:7,est:13,estim:[0,1,3,4,6,14],estimate_par:2,estimate_structur:2,estimated_cim:7,everi:[4,5],exam:13,exampl:[5,14,15],exclud:2,exctract:5,execut:4,exist:[4,5],exp_test_alfa:2,exponenti:2,expos:5,extend:13,extens:[2,5],extract:[4,5],fals:[2,4],fam_score_calcul:[0,1,14],famscor:2,famscorecalcul:2,fast_init:[2,4,13],file:[2,5,13],file_path:[2,5,13],filenam:5,filepath:5,fill:[2,13],filter:[2,4],filter_cims_with_mask:4,find:[2,5],first:[2,13],fix:4,fixtur:[7,8,9,10],follow:[4,5],form:4,format:[5,13],formula:2,found:5,frame:[4,5],from:[4,5,13],from_nod:5,gener:[2,4,5],generate_cim:4,generate_graph:4,generate_possible_sub_sets_of_s:2,get:[2,5],get_cims_numb:4,get_fam_scor:2,get_node_id:4,get_node_indx:4,get_ordered_by_indx_set_of_par:4,get_parents_by_id:4,get_positional_node_indx:4,get_score_from_graph:2,get_states_numb:4,given:[2,4,5],glob:13,graph:[2,4,9,13],graph_struct:4,graphic:2,grid:[4,9],group:4,grpah:13,has:[4,5,13],has_edg:4,has_prior_net_structur:4,have:5,header:5,header_column:5,hill:[2,3],hill_climbing_search:[0,1,14],hillclimb:3,hold:[2,4],hook:[7,8,9,10],how:5,hyperparamet:2,hypothesi:2,identifi:[2,4,5],iff:2,implement:[3,4,5,14],import_data:[5,13],import_sampled_cim:5,import_structur:5,import_trajectori:5,import_vari:[5,13],improv:[2,3],includ:[2,5],independ:2,independence_test:2,index:[2,4,5,13,14],indic:[2,4],indx:5,info:[4,13],inform:[3,4,5],init:13,initi:[2,4,5,13],inplac:13,insid:13,instal:14,instanti:4,interest:4,interfac:3,intes:4,isn:4,item:4,iter:[2,3],iterations_numb:[2,3],its:[2,3],join:13,json:[2,5,13],json_export:[0,1,14],json_import:[0,1,14],jsonarrai:5,jsonexport:5,jsonimport:[5,13],just:4,keep:[2,3,5],kei:[4,5],kind:2,knowledg:2,known:2,known_edg:2,label:[2,3,4,5],last:4,latest:13,lenght:[2,3],level:[2,5],likelihood:2,list:[2,3,4,5,13],list_of_column:4,list_of_edg:4,list_of_nod:4,load:5,loop:2,m_xu_suff_stat:2,m_xxu_suff_stat:2,made:4,main:13,mandatori:4,margin:2,marginal_likelihood_q:2,marginal_likelihood_theta:2,mask:[4,9],mask_arr:4,matric:[2,4],matrix:[2,4,5,9,13],max_par:[2,3],max_tr:4,max_val:4,maximum:[2,3,4],member:[4,5],mention:4,merg:5,method:[2,4,5,7,8,9,10],methodnam:[7,8,9,10],min_val:4,minimum:4,model:2,modul:[14,15],more:5,multi_trajectori:4,multipl:5,multiprocess:2,must:[4,5],name:[2,4,5,13],ndarrai:[2,4,5],necessari:[2,4,5],nest:5,net:[2,3,4,5,13],net_graph:2,network:[2,4,5],network_gener:[0,1,14],network_graph:[0,1,2,14],networkgener:4,networkgraph:[2,4,13],networkx:2,node:[2,3,4,5,9,13],node_id:[2,3,4,9],node_index:4,node_indx:[2,4],node_st:[4,9],node_states_numb:[4,9],nodes_index:4,nodes_indexes_arr:4,nodes_label:4,nodes_labels_list:4,nodes_numb:4,nodes_vals_arr:4,nodes_valu:[4,13],none:[2,3,4,5,7,9,10,13],normal:5,normalize_trajectori:5,number:[2,3,4],numpi:[2,4,5,9],obj:[10,13],object:[2,3,4,5,13],obvious:4,one:[4,5],one_iteration_of_ctpc_algorithm:2,one_level_norm:5,onli:5,oper:2,optim:[0,1,2,6,14],optimize_structur:3,option:[2,3],order:[2,4,5,10],origin:5,original_cols_numb:4,otherwis:[2,4,5],out:5,out_fil:5,outer:[5,13],output:[4,5],over:2,own:14,p_comb:[4,9],p_indx:[4,9],p_val:9,p_valu:9,packag:[14,15],page:14,panda:[4,5,13],parallel:4,param:4,paramet:[2,3,4,5,9,14],parameters_estim:[0,1,14],parametersestim:[2,13],parent:[2,3,4,5],parent_indx:2,parent_label:2,parent_set:2,parent_set_v:2,parent_v:2,parent_valu:9,parents_cardin:4,parents_comb:5,parents_index:4,parents_indx:9,parents_label:[4,9],parents_states_numb:[4,9],parents_v:[4,9],parents_valu:[4,9],part:[2,4],particular:[2,5],pass:13,path:[2,5,13],patienc:[2,3],peest:13,perform:2,pip:13,place:5,plot:2,png:2,posit:[4,5],possibl:[2,4],predict:3,prepar:5,present:[2,5],previous:5,print:13,prior:[2,13],prior_net_structur:5,privat:4,probabl:4,process:[2,3,4,5],processes_numb:2,properli:5,properti:[4,5],provid:[4,5],put:5,pyctbn:13,q_xx:4,rappres:4,raw:5,raw_data:5,reach:4,read:[5,13],read_csv:13,read_csv_fil:13,read_fil:13,read_json_fil:5,real:[2,4,5,13],refer:[4,5],reject:2,rel:4,relat:[4,5],releas:13,remain:5,remov:[2,4,5],remove_edg:4,remove_nod:4,repres:4,represent:2,requir:4,res:4,resid:[2,4],respect:4,result:[2,4,5,13],row:4,rtype:4,rule:[2,3],run:[7,8,9,10],runtest:[7,8,9,10],same:[4,5],sampl:[4,5,13],sample_fram:[5,13],sample_import:[0,1,14],sample_path:[0,1,2,14],sampled_cim:7,sampleimport:5,samplepath:[2,4,13],samples_label:5,save:[2,5,13],save_plot_estimated_structure_graph:2,save_result:[2,13],scalar_index:2,scalar_indexes_struct:2,score:2,se1:13,search:[2,3,14],second:2,see:5,select:13,self:[2,5,13],sep:2,sep_set:2,set:[2,4,5,7,8,9,10],set_of_cim:[0,1,2,5,14],setofcim:[2,4,5,13],setup:15,setupclass:[7,8,9,10],share:4,shift:[4,5],shifted_cols_head:5,show:2,signific:2,simbol:5,simpl:13,simpli:13,sinc:4,singl:4,single_cim_xu_marginal_likelihood_q:2,single_cim_xu_marginal_likelihood_theta:2,single_internal_cim_xxu_marginal_likelihood_theta:2,size:[2,4],socim:5,sofc1:13,sorter:5,specif:[2,4,13],specifi:4,spuriou:2,spurious_edg:2,start:5,state:[2,4],state_res_tim:4,state_residence_tim:4,state_transition_matrix:4,statist:2,stop:[2,3],str:[2,3,4,5,13],string:[2,3,4,5],structur:[0,1,2,3,5,9,14],structure_constraint_based_estim:[0,1,14],structure_estim:[0,1,3,14],structure_estimation_exampl:13,structure_graph:[0,1,2,5,6,14],structure_label:5,structure_score_based_estim:[0,1,14],structureconstraintbasedestim:2,structureestim:[2,3,13],structurescorebasedestim:2,structut:4,style:2,submodul:[1,6,14,15],subpackag:[14,15],subsequ:5,subset:2,suffici:2,suffuci:2,symbol:[4,5],synthet:5,t_end:4,t_xu_suff_stat:2,tabu:[2,3],tabu_length:[2,3],tabu_rules_dur:[2,3],tabu_search:[0,1,14],tabusearch:3,take:[4,13],taken:4,tar:13,task:[2,4],tau_xu:2,ternari:13,test:[0,2,15],test_add_edg:9,test_add_nod:9,test_adjacency_matrix:7,test_buid_samplepath_no_concatenated_sampl:9,test_buid_samplepath_no_vari:9,test_build_cim:9,test_build_complete_graph:7,test_build_p_combs_structur:9,test_build_removable_edges_matrix:7,test_build_saplepath_no_prior_net_structur:9,test_build_sort:10,test_build_structur:9,test_build_structure_bad_sort:9,test_build_time_columns_filtering_structure_for_a_nod:9,test_build_time_scalar_indexing_structure_for_a_nod:9,test_build_trajectori:9,test_build_transition_columns_filtering_structur:9,test_build_transition_scalar_indexing_structure_for_a_nod:9,test_cach:[0,6],test_child:2,test_cim:[0,6],test_clear:10,test_clear_concatenated_fram:10,test_clear_data_frame_list:10,test_compute_cim_coeffici:9,test_compute_parameters_for_nod:7,test_compute_row_delta_in_all_fram:10,test_compute_row_delta_in_all_frames_not_init_sort:10,test_compute_row_delta_single_samples_fram:10,test_dataset_id:10,test_edges_oper:9,test_equ:9,test_fast_init:[7,9],test_file_path:10,test_filter_cims_with_mask:9,test_find:10,test_generate_cim:9,test_generate_graph:9,test_generate_possible_sub_sets_of_s:7,test_generated_trajectori:9,test_generated_trajectory_max_tr:9,test_get_node_id:9,test_get_node_indx:9,test_get_ordered_by_indx_set_of_par:9,test_get_parents_by_id:9,test_get_positional_node_indx:9,test_get_states_numb:9,test_hill_climbing_search:[0,6],test_import_data:10,test_import_sampled_cim:10,test_import_structur:10,test_import_vari:10,test_init:[7,9,10],test_init_not_filled_dataframs:9,test_init_not_initialized_import:9,test_json_import:[0,6],test_multi_trajectori:9,test_networkgener:[0,6],test_networkgraph:[0,6],test_normalize_trajectori:10,test_normalize_trajectories_wrong_indx:10,test_normalize_trajectories_wrong_kei:10,test_ord:10,test_par:2,test_parameters_estim:[0,6],test_put:10,test_read_json_file_found:10,test_read_json_file_not_found:10,test_repr:9,test_sample_import:[0,6],test_sample_path:[0,6],test_save_plot_estimated_graph:7,test_save_result:7,test_setofcim:[0,6],test_structur:[0,6,8],test_structure_1:7,test_structure_2:7,test_structure_3:[7,8],test_structure_constraint_based_estim:[0,6],test_structure_estim:[0,6],test_structure_monoprocesso:7,test_structure_score_based_estim:[0,6],test_tabu_search:[0,6],test_tim:7,test_trajectori:[0,6],test_trajectorygener:[0,6],testcach:10,testcas:[7,8,9,10],testconditionalintensitymatrix:9,testhillclimbingsearch:8,testjsonimport:10,testnetworkgener:9,testnetworkgraph:9,testparametersestimatior:7,testsampleimport:10,testsamplepath:9,testsetofcim:9,teststructur:9,teststructureconstraintbasedestim:7,teststructureestim:7,teststructurescorebasedestim:7,testtabusearch:8,testtrajectori:9,testtrajectorygener:9,tha:5,therefor:4,theta:2,thi:[2,4,5,13],three:13,threshold:2,thumb:2,thumb_threshold:2,thumb_valu:2,time:[2,4,5,13],time_filt:4,time_kei:5,time_scalar_indexing_strucur:4,timestamp:5,to_nod:5,tot_vars_count:[2,3],total:[2,4],total_variables_count:4,total_variables_numb:4,traj:5,trajecory_head:5,trajectori:[0,1,2,5,13,14],trajectories_kei:5,trajectory_gener:[0,1,14],trajectory_list:5,trajectorygener:4,trajectri:13,transit:[2,4,5],transition_filt:4,transition_matric:4,transition_scalar_indexing_structur:4,tri:5,tupl:4,tutori:5,two:[2,4],type:[2,3,4,5,13],union:5,uniqu:5,unittest:[7,8,9,10],unus:4,usag:14,use:[2,13],used:[2,3,4,5],using:[2,3,4,5],util:[0,1,4,6,14],val:4,valid:2,valu:[2,3,4,5,9,13],values_list:13,var_id:2,variabl:[2,3,4,5,13],variable_cardin:5,variable_cim_xu_marginal_likelihood_q:2,variable_cim_xu_marginal_likelihood_theta:2,variable_label:5,variables_kei:5,variables_label:5,vector:[2,4],want:13,when:[2,4],where:[4,5],whether:4,which:[2,3,4,5],whl:13,who:2,without:[2,3],worker:4,write:5,you:[2,5,13],your:14},titles:["PyCTBN package","PyCTBN.PyCTBN package","PyCTBN.PyCTBN.estimators package","PyCTBN.PyCTBN.optimizers package","PyCTBN.PyCTBN.structure_graph package","PyCTBN.PyCTBN.utility package","PyCTBN.tests package","PyCTBN.tests.estimators package","PyCTBN.tests.optimizers package","PyCTBN.tests.structure_graph package","PyCTBN.tests.utility package","basic_main module","example module","Examples","Welcome to PyCTBN\u2019s documentation!","PyCTBN","setup module"],titleterms:{"import":13,abstract_export:5,abstract_import:5,basic_main:[0,11],cach:5,conditional_intensity_matrix:4,constraint_based_optim:3,content:[0,1,2,3,4,5,6,7,8,9,10],data:13,document:14,estim:[2,7,13],exampl:[12,13],fam_score_calcul:2,hill_climbing_search:3,implement:13,indic:14,instal:13,json_export:5,json_import:5,modul:[0,1,2,3,4,5,6,7,8,9,10,11,12,16],network_gener:4,network_graph:4,optim:[3,8],own:13,packag:[0,1,2,3,4,5,6,7,8,9,10],paramet:13,parameters_estim:2,pyctbn:[0,1,2,3,4,5,6,7,8,9,10,14,15],sample_import:5,sample_path:4,set_of_cim:4,setup:[0,16],structur:[4,13],structure_constraint_based_estim:2,structure_estim:2,structure_graph:[4,9],structure_score_based_estim:2,submodul:[0,2,3,4,5,7,8,9,10],subpackag:[0,1,6],tabl:14,tabu_search:3,test:[6,7,8,9,10],test_cach:10,test_cim:9,test_hill_climbing_search:8,test_json_import:10,test_networkgener:9,test_networkgraph:9,test_parameters_estim:7,test_sample_import:10,test_sample_path:9,test_setofcim:9,test_structur:9,test_structure_constraint_based_estim:7,test_structure_estim:7,test_structure_score_based_estim:7,test_tabu_search:8,test_trajectori:9,test_trajectorygener:9,trajectori:4,trajectory_gener:4,usag:13,util:[5,10],welcom:14,your:13}})
\ No newline at end of file
diff --git a/docs/.buildinfo b/docs/.buildinfo
deleted file mode 100644
index 13582d3..0000000
--- a/docs/.buildinfo
+++ /dev/null
@@ -1,4 +0,0 @@
-# Sphinx build info version 1
-# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 87e83150455399004cf3d149c3abeafb
-tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/docs/.doctrees/PyCTBN.PyCTBN.doctree b/docs/.doctrees/PyCTBN.PyCTBN.doctree
deleted file mode 100644
index 0422341..0000000
Binary files a/docs/.doctrees/PyCTBN.PyCTBN.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.PyCTBN.estimators.doctree b/docs/.doctrees/PyCTBN.PyCTBN.estimators.doctree
deleted file mode 100644
index 7d01b2b..0000000
Binary files a/docs/.doctrees/PyCTBN.PyCTBN.estimators.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.PyCTBN.optimizers.doctree b/docs/.doctrees/PyCTBN.PyCTBN.optimizers.doctree
deleted file mode 100644
index 70c7b60..0000000
Binary files a/docs/.doctrees/PyCTBN.PyCTBN.optimizers.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.PyCTBN.structure_graph.doctree b/docs/.doctrees/PyCTBN.PyCTBN.structure_graph.doctree
deleted file mode 100644
index eb16c24..0000000
Binary files a/docs/.doctrees/PyCTBN.PyCTBN.structure_graph.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.PyCTBN.utility.doctree b/docs/.doctrees/PyCTBN.PyCTBN.utility.doctree
deleted file mode 100644
index 5f796fc..0000000
Binary files a/docs/.doctrees/PyCTBN.PyCTBN.utility.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.doctree b/docs/.doctrees/PyCTBN.doctree
deleted file mode 100644
index 2a2f60e..0000000
Binary files a/docs/.doctrees/PyCTBN.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.tests.doctree b/docs/.doctrees/PyCTBN.tests.doctree
deleted file mode 100644
index fefc2ba..0000000
Binary files a/docs/.doctrees/PyCTBN.tests.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.tests.estimators.doctree b/docs/.doctrees/PyCTBN.tests.estimators.doctree
deleted file mode 100644
index 80596df..0000000
Binary files a/docs/.doctrees/PyCTBN.tests.estimators.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.tests.optimizers.doctree b/docs/.doctrees/PyCTBN.tests.optimizers.doctree
deleted file mode 100644
index 3ff3f0f..0000000
Binary files a/docs/.doctrees/PyCTBN.tests.optimizers.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.tests.structure_graph.doctree b/docs/.doctrees/PyCTBN.tests.structure_graph.doctree
deleted file mode 100644
index 7eca987..0000000
Binary files a/docs/.doctrees/PyCTBN.tests.structure_graph.doctree and /dev/null differ
diff --git a/docs/.doctrees/PyCTBN.tests.utility.doctree b/docs/.doctrees/PyCTBN.tests.utility.doctree
deleted file mode 100644
index b283295..0000000
Binary files a/docs/.doctrees/PyCTBN.tests.utility.doctree and /dev/null differ
diff --git a/docs/.doctrees/basic_main.doctree b/docs/.doctrees/basic_main.doctree
deleted file mode 100644
index f4ece6f..0000000
Binary files a/docs/.doctrees/basic_main.doctree and /dev/null differ
diff --git a/docs/.doctrees/environment.pickle b/docs/.doctrees/environment.pickle
deleted file mode 100644
index 7c761fd..0000000
Binary files a/docs/.doctrees/environment.pickle and /dev/null differ
diff --git a/docs/.doctrees/example.doctree b/docs/.doctrees/example.doctree
deleted file mode 100644
index 155306f..0000000
Binary files a/docs/.doctrees/example.doctree and /dev/null differ
diff --git a/docs/.doctrees/examples.doctree b/docs/.doctrees/examples.doctree
deleted file mode 100644
index 7809651..0000000
Binary files a/docs/.doctrees/examples.doctree and /dev/null differ
diff --git a/docs/.doctrees/index.doctree b/docs/.doctrees/index.doctree
deleted file mode 100644
index 32f7ba4..0000000
Binary files a/docs/.doctrees/index.doctree and /dev/null differ
diff --git a/docs/.doctrees/modules.doctree b/docs/.doctrees/modules.doctree
deleted file mode 100644
index b00fadd..0000000
Binary files a/docs/.doctrees/modules.doctree and /dev/null differ
diff --git a/docs/.doctrees/setup.doctree b/docs/.doctrees/setup.doctree
deleted file mode 100644
index 955f85e..0000000
Binary files a/docs/.doctrees/setup.doctree and /dev/null differ
diff --git a/docs/.nojekyll b/docs/.nojekyll
deleted file mode 100644
index e69de29..0000000
diff --git a/docs-out/Makefile b/docs/Makefile
similarity index 100%
rename from docs-out/Makefile
rename to docs/Makefile
diff --git a/docs-out/PyCTBN.PyCTBN.estimators.rst b/docs/PyCTBN.PyCTBN.estimators.rst
similarity index 52%
rename from docs-out/PyCTBN.PyCTBN.estimators.rst
rename to docs/PyCTBN.PyCTBN.estimators.rst
index 0994200..2340868 100644
--- a/docs-out/PyCTBN.PyCTBN.estimators.rst
+++ b/docs/PyCTBN.PyCTBN.estimators.rst
@@ -1,45 +1,45 @@
-PyCTBN.PyCTBN.estimators package
+pyctbn.legacy.estimators package
================================
Submodules
----------
-PyCTBN.PyCTBN.estimators.fam\_score\_calculator module
+pyctbn.legacy.estimators.fam\_score\_calculator module
------------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.estimators.fam_score_calculator
+.. automodule:: pyctbn.legacy.estimators.fam_score_calculator
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.estimators.parameters\_estimator module
+pyctbn.legacy.estimators.parameters\_estimator module
-----------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.estimators.parameters_estimator
+.. automodule:: pyctbn.legacy.estimators.parameters_estimator
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.estimators.structure\_constraint\_based\_estimator module
+pyctbn.legacy.estimators.structure\_constraint\_based\_estimator module
-----------------------------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.estimators.structure_constraint_based_estimator
+.. automodule:: pyctbn.legacy.estimators.structure_constraint_based_estimator
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.estimators.structure\_estimator module
+pyctbn.legacy.estimators.structure\_estimator module
----------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.estimators.structure_estimator
+.. automodule:: pyctbn.legacy.estimators.structure_estimator
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.estimators.structure\_score\_based\_estimator module
+pyctbn.legacy.estimators.structure\_score\_based\_estimator module
------------------------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.estimators.structure_score_based_estimator
+.. automodule:: pyctbn.legacy.estimators.structure_score_based_estimator
:members:
:undoc-members:
:show-inheritance:
@@ -47,7 +47,7 @@ PyCTBN.PyCTBN.estimators.structure\_score\_based\_estimator module
Module contents
---------------
-.. automodule:: PyCTBN.PyCTBN.estimators
+.. automodule:: pyctbn.legacy.estimators
:members:
:undoc-members:
:show-inheritance:
diff --git a/docs/PyCTBN.PyCTBN.html b/docs/PyCTBN.PyCTBN.html
deleted file mode 100644
index 29ef30a..0000000
--- a/docs/PyCTBN.PyCTBN.html
+++ /dev/null
@@ -1,243 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
PyCTBN.PyCTBN package — PyCTBN 2.0 documentation
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Porão do Juca
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-PyCTBN.PyCTBN package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs-out/PyCTBN.PyCTBN.optimizers.rst b/docs/PyCTBN.PyCTBN.optimizers.rst
similarity index 53%
rename from docs-out/PyCTBN.PyCTBN.optimizers.rst
rename to docs/PyCTBN.PyCTBN.optimizers.rst
index 07942ec..4d4733d 100644
--- a/docs-out/PyCTBN.PyCTBN.optimizers.rst
+++ b/docs/PyCTBN.PyCTBN.optimizers.rst
@@ -1,37 +1,37 @@
-PyCTBN.PyCTBN.optimizers package
+pyctbn.legacy.optimizers package
================================
Submodules
----------
-PyCTBN.PyCTBN.optimizers.constraint\_based\_optimizer module
+pyctbn.legacy.optimizers.constraint\_based\_optimizer module
------------------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.optimizers.constraint_based_optimizer
+.. automodule:: pyctbn.legacy.optimizers.constraint_based_optimizer
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.optimizers.hill\_climbing\_search module
+pyctbn.legacy.optimizers.hill\_climbing\_search module
------------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.optimizers.hill_climbing_search
+.. automodule:: pyctbn.legacy.optimizers.hill_climbing_search
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.optimizers.optimizer module
+pyctbn.legacy.optimizers.optimizer module
-----------------------------------------
-.. automodule:: PyCTBN.PyCTBN.optimizers.optimizer
+.. automodule:: pyctbn.legacy.optimizers.optimizer
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.optimizers.tabu\_search module
+pyctbn.legacy.optimizers.tabu\_search module
--------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.optimizers.tabu_search
+.. automodule:: pyctbn.legacy.optimizers.tabu_search
:members:
:undoc-members:
:show-inheritance:
@@ -39,7 +39,7 @@ PyCTBN.PyCTBN.optimizers.tabu\_search module
Module contents
---------------
-.. automodule:: PyCTBN.PyCTBN.optimizers
+.. automodule:: pyctbn.legacy.optimizers
:members:
:undoc-members:
:show-inheritance:
diff --git a/docs-out/PyCTBN.PyCTBN.rst b/docs/PyCTBN.PyCTBN.rst
similarity index 50%
rename from docs-out/PyCTBN.PyCTBN.rst
rename to docs/PyCTBN.PyCTBN.rst
index 1496303..2182764 100644
--- a/docs-out/PyCTBN.PyCTBN.rst
+++ b/docs/PyCTBN.PyCTBN.rst
@@ -1,4 +1,4 @@
-PyCTBN.PyCTBN package
+pyctbn.legacy package
=====================
Subpackages
@@ -7,15 +7,15 @@ Subpackages
.. toctree::
:maxdepth: 4
- PyCTBN.PyCTBN.estimators
- PyCTBN.PyCTBN.optimizers
- PyCTBN.PyCTBN.structure_graph
- PyCTBN.PyCTBN.utility
+ pyctbn.legacy.estimators
+ pyctbn.legacy.optimizers
+ pyctbn.legacy.structure_graph
+ pyctbn.legacy.utility
Module contents
---------------
-.. automodule:: PyCTBN.PyCTBN
+.. automodule:: pyctbn.legacy
:members:
:undoc-members:
:show-inheritance:
diff --git a/docs-out/PyCTBN.PyCTBN.structure_graph.rst b/docs/PyCTBN.PyCTBN.structure_graph.rst
similarity index 51%
rename from docs-out/PyCTBN.PyCTBN.structure_graph.rst
rename to docs/PyCTBN.PyCTBN.structure_graph.rst
index f00477b..4b9aca2 100644
--- a/docs-out/PyCTBN.PyCTBN.structure_graph.rst
+++ b/docs/PyCTBN.PyCTBN.structure_graph.rst
@@ -1,69 +1,69 @@
-PyCTBN.PyCTBN.structure\_graph package
+pyctbn.legacy.structure\_graph package
======================================
Submodules
----------
-PyCTBN.PyCTBN.structure\_graph.conditional\_intensity\_matrix module
+pyctbn.legacy.structure\_graph.conditional\_intensity\_matrix module
--------------------------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix
+.. automodule:: pyctbn.legacy.structure_graph.conditional_intensity_matrix
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.structure\_graph.network\_generator module
+pyctbn.legacy.structure\_graph.network\_generator module
--------------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph.network_generator
+.. automodule:: pyctbn.legacy.structure_graph.network_generator
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.structure\_graph.network\_graph module
+pyctbn.legacy.structure\_graph.network\_graph module
----------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph.network_graph
+.. automodule:: pyctbn.legacy.structure_graph.network_graph
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.structure\_graph.sample\_path module
+pyctbn.legacy.structure\_graph.sample\_path module
--------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph.sample_path
+.. automodule:: pyctbn.legacy.structure_graph.sample_path
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.structure\_graph.set\_of\_cims module
+pyctbn.legacy.structure\_graph.set\_of\_cims module
---------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph.set_of_cims
+.. automodule:: pyctbn.legacy.structure_graph.set_of_cims
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.structure\_graph.structure module
+pyctbn.legacy.structure\_graph.structure module
-----------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph.structure
+.. automodule:: pyctbn.legacy.structure_graph.structure
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.structure\_graph.trajectory module
+pyctbn.legacy.structure\_graph.trajectory module
------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph.trajectory
+.. automodule:: pyctbn.legacy.structure_graph.trajectory
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.structure\_graph.trajectory\_generator module
+pyctbn.legacy.structure\_graph.trajectory\_generator module
-----------------------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph.trajectory_generator
+.. automodule:: pyctbn.legacy.structure_graph.trajectory_generator
:members:
:undoc-members:
:show-inheritance:
@@ -71,7 +71,7 @@ PyCTBN.PyCTBN.structure\_graph.trajectory\_generator module
Module contents
---------------
-.. automodule:: PyCTBN.PyCTBN.structure_graph
+.. automodule:: pyctbn.legacy.structure_graph
:members:
:undoc-members:
:show-inheritance:
diff --git a/docs/PyCTBN.PyCTBN.utility.html b/docs/PyCTBN.PyCTBN.utility.html
deleted file mode 100644
index fe87d56..0000000
--- a/docs/PyCTBN.PyCTBN.utility.html
+++ /dev/null
@@ -1,739 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
PyCTBN.PyCTBN.utility package — PyCTBN 2.0 documentation
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Porão do Juca
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-PyCTBN.PyCTBN.utility package
-
-
-PyCTBN.PyCTBN.utility.abstract_exporter module
-
-
-class PyCTBN.PyCTBN.utility.abstract_exporter.
AbstractExporter
( variables : pandas.core.frame.DataFrame = None , dyn_str : pandas.core.frame.DataFrame = None , dyn_cims : dict = None )
-Bases: abc.ABC
-Abstract class that exposes the methods to save in json format a network information
-along with one or more trajectories generated basing on it
-
-Parameters
-
-_variables (pandas.DataFrame ) – Dataframe containing the nodes labels and cardinalities
-_dyn_str (pandas.DataFrame ) – Dataframe containing the structure of the network (edges)
-_dyn_cims (dict ) – It contains, for every variable (label is the key), the SetOfCims object related to it
-_trajectories (List ) – List of trajectories, that can be added subsequently
-
-
-
-
-
-add_trajectory
( trajectory : list )
-Add a new trajectory to the current list
-
-Parameters
-trajectory (pandas.DataFrame ) – The trajectory to add
-
-
-
-
-
-
-abstract out_file
( filename )
-
-Create a file in current directory and write on it the previously added data (variables, dyn_str, dyn_cims and trajectories)
-
-
-
-Parameters
-filename (string ) – Name of the output file (it must include json extension)
-
-
-
-
-
-
-
-
-PyCTBN.PyCTBN.utility.abstract_importer module
-
-
-class PyCTBN.PyCTBN.utility.abstract_importer.
AbstractImporter
( file_path : str = None , trajectory_list : Union[ pandas.core.frame.DataFrame, numpy.ndarray] = None , variables : pandas.core.frame.DataFrame = None , prior_net_structure : pandas.core.frame.DataFrame = None )
-Bases: abc.ABC
-Abstract class that exposes all the necessary methods to process the trajectories and the net structure.
-
-Parameters
-
-file_path (str ) – the file path, or dataset name if you import already processed data
-trajectory_list (typing.Union [ pandas.DataFrame , numpy.ndarray ] ) – Dataframe or numpy array containing the concatenation of all the processed trajectories
-variables (pandas.DataFrame ) – Dataframe containing the nodes labels and cardinalities
-
-
-Prior_net_structure
-Dataframe containing the structure of the network (edges)
-
-_sorter
-A list containing the variables labels in the SAME order as the columns in concatenated_samples
-
-
-
-
Warning
-
The parameters variables
and prior_net_structure
HAVE to be properly constructed
-as Pandas Dataframes with the following structure:
-Header of _df_structure = [From_Node | To_Node]
-Header of _df_variables = [Variable_Label | Variable_Cardinality]
-See the tutorial on how to construct a correct concatenated_samples
Dataframe/ndarray.
-
-
-
Note
-
See :class:JsonImporter
for an example implementation
-
-
-
-build_list_of_samples_array
( concatenated_sample : pandas.core.frame.DataFrame ) → List
-Builds a List containing the the delta times numpy array, and the complete transitions matrix
-
-Parameters
-concatenated_sample (pandas.Dataframe ) – the dataframe/array from which the time, and transitions matrix have to be extracted
-and converted
-
-Returns
-the resulting list of numpy arrays
-
-Return type
-List
-
-
-
-
-
-
-abstract build_sorter
( trajecory_header : object ) → List
-Initializes the _sorter
class member from a trajectory dataframe, exctracting the header of the frame
-and keeping ONLY the variables symbolic labels, cutting out the time label in the header.
-
-Parameters
-trajecory_header (object ) – an object that will be used to define the header
-
-Returns
-A list containing the processed header.
-
-Return type
-List
-
-
-
-
-
-
-clear_concatenated_frame
( ) → None
-Removes all values in the dataframe concatenated_samples.
-
-
-
-
-compute_row_delta_in_all_samples_frames
( df_samples_list : List ) → None
-Calls the method compute_row_delta_sigle_samples_frame
on every dataframe present in the list
-df_samples_list
.
-Concatenates the result in the dataframe concatanated_samples
-
-Parameters
-df_samples_list (List ) – the datframe’s list to be processed and concatenated
-
-
-
-
Warning
-
The Dataframe sample_frame has to follow the column structure of this header:
-Header of sample_frame = [Time | Variable values]
-The class member self._sorter HAS to be properly INITIALIZED (See class members definition doc)
-
-
-
Note
-
After the call of this method the class member concatanated_samples
will contain all processed
-and merged trajectories
-
-
-
-
-
-compute_row_delta_sigle_samples_frame
( sample_frame : pandas.core.frame.DataFrame , columns_header : List , shifted_cols_header : List ) → pandas.core.frame.DataFrame
-Computes the difference between each value present in th time column.
-Copies and shift by one position up all the values present in the remaining columns.
-
-Parameters
-
-sample_frame (pandas.Dataframe ) – the traj to be processed
-columns_header (List ) – the original header of sample_frame
-shifted_cols_header (List ) – a copy of columns_header with changed names of the contents
-
-
-Returns
-The processed dataframe
-
-Return type
-pandas.Dataframe
-
-
-
-
Warning
-
the Dataframe sample_frame
has to follow the column structure of this header:
-Header of sample_frame = [Time | Variable values]
-
-
-
-
-
-property concatenated_samples
-
-
-
-
-abstract dataset_id
( ) → object
-If the original dataset contains multiple dataset, this method returns a unique id to identify the current
-dataset
-
-
-
-
-property file_path
-
-
-
-
-property sorter
-
-
-
-
-property structure
-
-
-
-
-property variables
-
-
-
-
-
-
-PyCTBN.PyCTBN.utility.cache module
-
-
-class PyCTBN.PyCTBN.utility.cache.
Cache
-Bases: object
-This class acts as a cache of SetOfCims
objects for a node.
-
-__list_of_sets_of_parents
-a list of Sets
objects of the parents to which the cim in cache at SAME
-index is related
-
-__actual_cache
-a list of setOfCims objects
-
-
-
-
-clear
( )
-Clear the contents both of __actual_cache
and __list_of_sets_of_parents
.
-
-
-
-
-find
( parents_comb : Set )
-Tries to find in cache given the symbolic parents combination parents_comb
the SetOfCims
-related to that parents_comb
.
-
-Parameters
-parents_comb (Set ) – the parents related to that SetOfCims
-
-Returns
-A SetOfCims
object if the parents_comb
index is found in __list_of_sets_of_parents
.
-None otherwise.
-
-Return type
-SetOfCims
-
-
-
-
-
-
-put
( parents_comb : Set , socim : PyCTBN.PyCTBN.structure_graph.set_of_cims.SetOfCims )
-Place in cache the SetOfCims
object, and the related symbolic index parents_comb
in
-__list_of_sets_of_parents
.
-
-Parameters
-
-
-
-
-
-
-
-
-
-PyCTBN.PyCTBN.utility.json_exporter module
-
-
-class PyCTBN.PyCTBN.utility.json_exporter.
JsonExporter
( variables : pandas.core.frame.DataFrame = None , dyn_str : pandas.core.frame.DataFrame = None , dyn_cims : dict = None )
-Bases: PyCTBN.PyCTBN.utility.abstract_exporter.AbstractExporter
-Provides the methods to save in json format a network information
-along with one or more trajectories generated basing on it
-
-Parameters
-
-_variables (pandas.DataFrame ) – Dataframe containing the nodes labels and cardinalities
-_dyn_str (pandas.DataFrame ) – Dataframe containing the structure of the network (edges)
-_dyn_cims (dict ) – It contains, for every variable (label is the key), the SetOfCims object related to it
-_trajectories (List ) – List of trajectories, that can be added subsequently
-
-
-
-
-
-cims_to_json
( ) → dict
-
-
-
-
-out_file
( filename )
-
-Create a file in current directory and write on it the previously added data (variables, dyn_str, dyn_cims and trajectories)
-
-
-
-Parameters
-filename (string ) – Name of the output file (it must include json extension)
-
-
-
-
-
-
-
-
-PyCTBN.PyCTBN.utility.json_importer module
-
-
-class PyCTBN.PyCTBN.utility.json_importer.
JsonImporter
( file_path : str , samples_label : str , structure_label : str , variables_label : str , time_key : str , variables_key : str , cims_label : str = None )
-Bases: PyCTBN.PyCTBN.utility.abstract_importer.AbstractImporter
-Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare
-the data in json extension.
-
-Parameters
-
-file_path (string ) – the path of the file that contains tha data to be imported
-samples_label (string ) – the reference key for the samples in the trajectories
-structure_label (string ) – the reference key for the structure of the network data
-variables_label (string ) – the reference key for the cardinalites of the nodes data
-time_key (string ) – the key used to identify the timestamps in each trajectory
-variables_key (string ) – the key used to identify the names of the variables in the net
-
-
-_array_indx
-the index of the outer JsonArray to extract the data from
-
-_df_samples_list
-a Dataframe list in which every dataframe contains a trajectory
-
-_raw_data
-The raw contents of the json file to import
-
-
-
-
-build_sorter
( sample_frame : pandas.core.frame.DataFrame ) → List
-Implements the abstract method build_sorter of the AbstractImporter
for this dataset.
-
-
-
-
-clear_data_frame_list
( ) → None
-Removes all values present in the dataframes in the list _df_samples_list
.
-
-
-
-
-dataset_id
( ) → object
-If the original dataset contains multiple dataset, this method returns a unique id to identify the current
-dataset
-
-
-
-
-import_data
( indx : int = 0 ) → None
-Implements the abstract method of AbstractImporter
.
-
-Parameters
-indx (int ) – the index of the outer JsonArray to extract the data from, default to 0
-
-
-
-
-
-
-import_sampled_cims
( raw_data : List , indx : int , cims_key : str ) → Dict
-Imports the synthetic CIMS in the dataset in a dictionary, using variables labels
-as keys for the set of CIMS of a particular node.
-
-Parameters
-
-raw_data (List ) – List of Dicts
-indx (int ) – The index of the array from which the data have to be extracted
-cims_key (string ) – the key where the json object cims are placed
-
-
-Returns
-a dictionary containing the sampled CIMS for all the variables in the net
-
-Return type
-Dictionary
-
-
-
-
-
-
-import_structure
( raw_data : List ) → pandas.core.frame.DataFrame
-Imports in a dataframe the data in the list raw_data at the key _structure_label
-
-Parameters
-raw_data (List ) – List of Dicts
-
-Returns
-Dataframe containg the starting node a ending node of every arc of the network
-
-Return type
-pandas.Dataframe
-
-
-
-
-
-
-import_trajectories
( raw_data : List ) → List
-Imports the trajectories from the list of dicts raw_data
.
-
-Parameters
-raw_data (List ) – List of Dicts
-
-Returns
-List of dataframes containing all the trajectories
-
-Return type
-List
-
-
-
-
-
-
-import_variables
( raw_data : List ) → pandas.core.frame.DataFrame
-Imports the data in raw_data
at the key _variables_label
.
-
-Parameters
-raw_data (List ) – List of Dicts
-
-Returns
-Datframe containg the variables simbolic labels and their cardinalities
-
-Return type
-pandas.Dataframe
-
-
-
-
-
-
-normalize_trajectories
( raw_data : List , indx : int , trajectories_key : str ) → List
-Extracts the trajectories in raw_data
at the index index
at the key trajectories key
.
-
-Parameters
-
-raw_data (List ) – List of Dicts
-indx (int ) – The index of the array from which the data have to be extracted
-trajectories_key (string ) – the key of the trajectories objects
-
-
-Returns
-A list of daframes containg the trajectories
-
-Return type
-List
-
-
-
-
-
-
-one_level_normalizing
( raw_data : List , indx : int , key : str ) → pandas.core.frame.DataFrame
-Extracts the one-level nested data in the list raw_data
at the index indx
at the key key
.
-
-Parameters
-
-raw_data (List ) – List of Dicts
-indx (int ) – The index of the array from which the data have to be extracted
-key (string ) – the key for the Dicts from which exctract data
-
-
-Returns
-A normalized dataframe
-
-Return type
-pandas.Datframe
-
-
-
-
-
-
-read_json_file
( ) → List
-Reads the JSON file in the path self.filePath.
-
-Returns
-The contents of the json file
-
-Return type
-List
-
-
-
-
-
-
-
-
-PyCTBN.PyCTBN.utility.sample_importer module
-
-
-class PyCTBN.PyCTBN.utility.sample_importer.
SampleImporter
( trajectory_list : Union[ pandas.core.frame.DataFrame, numpy.ndarray, List] = None , variables : Union[ pandas.core.frame.DataFrame, numpy.ndarray, List] = None , prior_net_structure : Union[ pandas.core.frame.DataFrame, numpy.ndarray, List] = None )
-Bases: PyCTBN.PyCTBN.utility.abstract_importer.AbstractImporter
-Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare
-the data loaded directly by using DataFrame
-
-Parameters
-
-trajectory_list (typing.Union [ pd.DataFrame , np.ndarray , typing.List ] ) – the data that describes the trajectories
-variables (typing.Union [ pd.DataFrame , np.ndarray , typing.List ] ) – the data that describes the variables with name and cardinality
-prior_net_structure (typing.Union [ pd.DataFrame , np.ndarray , typing.List ] ) – the data of the real structure, if it exists
-
-
-_df_samples_list
-a Dataframe list in which every dataframe contains a trajectory
-
-_raw_data
-The raw contents of the json file to import
-
-
-
-
-build_sorter
( sample_frame : pandas.core.frame.DataFrame ) → List
-Implements the abstract method build_sorter of the AbstractImporter
in order to get the ordered variables list.
-
-
-
-
-dataset_id
( ) → str
-If the original dataset contains multiple dataset, this method returns a unique id to identify the current
-dataset
-
-
-
-
-import_data
( header_column = None )
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs-out/PyCTBN.PyCTBN.utility.rst b/docs/PyCTBN.PyCTBN.utility.rst
similarity index 53%
rename from docs-out/PyCTBN.PyCTBN.utility.rst
rename to docs/PyCTBN.PyCTBN.utility.rst
index d804edf..e661b1b 100644
--- a/docs-out/PyCTBN.PyCTBN.utility.rst
+++ b/docs/PyCTBN.PyCTBN.utility.rst
@@ -1,53 +1,53 @@
-PyCTBN.PyCTBN.utility package
+pyctbn.legacy.utility package
=============================
Submodules
----------
-PyCTBN.PyCTBN.utility.abstract\_exporter module
+pyctbn.legacy.utility.abstract\_exporter module
-----------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.utility.abstract_exporter
+.. automodule:: pyctbn.legacy.utility.abstract_exporter
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.utility.abstract\_importer module
+pyctbn.legacy.utility.abstract\_importer module
-----------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.utility.abstract_importer
+.. automodule:: pyctbn.legacy.utility.abstract_importer
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.utility.cache module
+pyctbn.legacy.utility.cache module
----------------------------------
-.. automodule:: PyCTBN.PyCTBN.utility.cache
+.. automodule:: pyctbn.legacy.utility.cache
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.utility.json\_exporter module
+pyctbn.legacy.utility.json\_exporter module
-------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.utility.json_exporter
+.. automodule:: pyctbn.legacy.utility.json_exporter
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.utility.json\_importer module
+pyctbn.legacy.utility.json\_importer module
-------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.utility.json_importer
+.. automodule:: pyctbn.legacy.utility.json_importer
:members:
:undoc-members:
:show-inheritance:
-PyCTBN.PyCTBN.utility.sample\_importer module
+pyctbn.legacy.utility.sample\_importer module
---------------------------------------------
-.. automodule:: PyCTBN.PyCTBN.utility.sample_importer
+.. automodule:: pyctbn.legacy.utility.sample_importer
:members:
:undoc-members:
:show-inheritance:
@@ -55,7 +55,7 @@ PyCTBN.PyCTBN.utility.sample\_importer module
Module contents
---------------
-.. automodule:: PyCTBN.PyCTBN.utility
+.. automodule:: pyctbn.legacy.utility
:members:
:undoc-members:
:show-inheritance:
diff --git a/docs/PyCTBN.html b/docs/PyCTBN.html
deleted file mode 100644
index c4d5c15..0000000
--- a/docs/PyCTBN.html
+++ /dev/null
@@ -1,292 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
PyCTBN package — PyCTBN 2.0 documentation
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Porão do Juca
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-PyCTBN package
-
-
-
-PyCTBN.basic_main module
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs-out/PyCTBN.rst b/docs/PyCTBN.rst
similarity index 96%
rename from docs-out/PyCTBN.rst
rename to docs/PyCTBN.rst
index 3aaa3ce..258a0a8 100644
--- a/docs-out/PyCTBN.rst
+++ b/docs/PyCTBN.rst
@@ -7,7 +7,7 @@ Subpackages
.. toctree::
:maxdepth: 4
- PyCTBN.PyCTBN
+ pyctbn.legacy
PyCTBN.tests
Submodules
diff --git a/docs-out/PyCTBN.tests.estimators.rst b/docs/PyCTBN.tests.estimators.rst
similarity index 100%
rename from docs-out/PyCTBN.tests.estimators.rst
rename to docs/PyCTBN.tests.estimators.rst
diff --git a/docs/PyCTBN.tests.html b/docs/PyCTBN.tests.html
deleted file mode 100644
index 7036b72..0000000
--- a/docs/PyCTBN.tests.html
+++ /dev/null
@@ -1,226 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
PyCTBN.tests package — PyCTBN 2.0 documentation
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Porão do Juca
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-PyCTBN.tests package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs-out/PyCTBN.tests.optimizers.rst b/docs/PyCTBN.tests.optimizers.rst
similarity index 100%
rename from docs-out/PyCTBN.tests.optimizers.rst
rename to docs/PyCTBN.tests.optimizers.rst
diff --git a/docs-out/PyCTBN.tests.rst b/docs/PyCTBN.tests.rst
similarity index 100%
rename from docs-out/PyCTBN.tests.rst
rename to docs/PyCTBN.tests.rst
diff --git a/docs-out/PyCTBN.tests.structure_graph.rst b/docs/PyCTBN.tests.structure_graph.rst
similarity index 100%
rename from docs-out/PyCTBN.tests.structure_graph.rst
rename to docs/PyCTBN.tests.structure_graph.rst
diff --git a/docs-out/PyCTBN.tests.utility.rst b/docs/PyCTBN.tests.utility.rst
similarity index 100%
rename from docs-out/PyCTBN.tests.utility.rst
rename to docs/PyCTBN.tests.utility.rst
diff --git a/docs-out/_build/doctrees/PyCTBN.PyCTBN.doctree b/docs/_build/doctrees/PyCTBN.PyCTBN.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.PyCTBN.doctree
rename to docs/_build/doctrees/PyCTBN.PyCTBN.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.PyCTBN.estimators.doctree b/docs/_build/doctrees/PyCTBN.PyCTBN.estimators.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.PyCTBN.estimators.doctree
rename to docs/_build/doctrees/PyCTBN.PyCTBN.estimators.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.PyCTBN.optimizers.doctree b/docs/_build/doctrees/PyCTBN.PyCTBN.optimizers.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.PyCTBN.optimizers.doctree
rename to docs/_build/doctrees/PyCTBN.PyCTBN.optimizers.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.PyCTBN.structure_graph.doctree b/docs/_build/doctrees/PyCTBN.PyCTBN.structure_graph.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.PyCTBN.structure_graph.doctree
rename to docs/_build/doctrees/PyCTBN.PyCTBN.structure_graph.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.PyCTBN.utility.doctree b/docs/_build/doctrees/PyCTBN.PyCTBN.utility.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.PyCTBN.utility.doctree
rename to docs/_build/doctrees/PyCTBN.PyCTBN.utility.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.doctree b/docs/_build/doctrees/PyCTBN.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.doctree
rename to docs/_build/doctrees/PyCTBN.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.tests.doctree b/docs/_build/doctrees/PyCTBN.tests.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.tests.doctree
rename to docs/_build/doctrees/PyCTBN.tests.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.tests.estimators.doctree b/docs/_build/doctrees/PyCTBN.tests.estimators.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.tests.estimators.doctree
rename to docs/_build/doctrees/PyCTBN.tests.estimators.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.tests.optimizers.doctree b/docs/_build/doctrees/PyCTBN.tests.optimizers.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.tests.optimizers.doctree
rename to docs/_build/doctrees/PyCTBN.tests.optimizers.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.tests.structure_graph.doctree b/docs/_build/doctrees/PyCTBN.tests.structure_graph.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.tests.structure_graph.doctree
rename to docs/_build/doctrees/PyCTBN.tests.structure_graph.doctree
diff --git a/docs-out/_build/doctrees/PyCTBN.tests.utility.doctree b/docs/_build/doctrees/PyCTBN.tests.utility.doctree
similarity index 100%
rename from docs-out/_build/doctrees/PyCTBN.tests.utility.doctree
rename to docs/_build/doctrees/PyCTBN.tests.utility.doctree
diff --git a/docs-out/_build/doctrees/basic_main.doctree b/docs/_build/doctrees/basic_main.doctree
similarity index 100%
rename from docs-out/_build/doctrees/basic_main.doctree
rename to docs/_build/doctrees/basic_main.doctree
diff --git a/docs-out/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle
similarity index 100%
rename from docs-out/_build/doctrees/environment.pickle
rename to docs/_build/doctrees/environment.pickle
diff --git a/docs-out/_build/doctrees/example.doctree b/docs/_build/doctrees/example.doctree
similarity index 100%
rename from docs-out/_build/doctrees/example.doctree
rename to docs/_build/doctrees/example.doctree
diff --git a/docs-out/_build/doctrees/examples.doctree b/docs/_build/doctrees/examples.doctree
similarity index 100%
rename from docs-out/_build/doctrees/examples.doctree
rename to docs/_build/doctrees/examples.doctree
diff --git a/docs-out/_build/doctrees/index.doctree b/docs/_build/doctrees/index.doctree
similarity index 100%
rename from docs-out/_build/doctrees/index.doctree
rename to docs/_build/doctrees/index.doctree
diff --git a/docs-out/_build/doctrees/modules.doctree b/docs/_build/doctrees/modules.doctree
similarity index 100%
rename from docs-out/_build/doctrees/modules.doctree
rename to docs/_build/doctrees/modules.doctree
diff --git a/docs-out/_build/doctrees/setup.doctree b/docs/_build/doctrees/setup.doctree
similarity index 100%
rename from docs-out/_build/doctrees/setup.doctree
rename to docs/_build/doctrees/setup.doctree
diff --git a/docs-out/_build/html/.buildinfo b/docs/_build/html/.buildinfo
similarity index 100%
rename from docs-out/_build/html/.buildinfo
rename to docs/_build/html/.buildinfo
diff --git a/docs/PyCTBN.PyCTBN.estimators.html b/docs/_build/html/PyCTBN.PyCTBN.estimators.html
similarity index 83%
rename from docs/PyCTBN.PyCTBN.estimators.html
rename to docs/_build/html/PyCTBN.PyCTBN.estimators.html
index 744c567..abc5b0a 100644
--- a/docs/PyCTBN.PyCTBN.estimators.html
+++ b/docs/_build/html/PyCTBN.PyCTBN.estimators.html
@@ -8,7 +8,7 @@
-
PyCTBN.PyCTBN.estimators package — PyCTBN 2.0 documentation
+
pyctbn.legacy.estimators package — PyCTBN 2.0 documentation
@@ -27,9 +27,9 @@
href="genindex.html"/>
-
-
-
+
+
+
@@ -63,9 +63,9 @@
Contents:
-PyCTBN.PyCTBN package
-Subpackages
-Module contents
+pyctbn.legacy package
Examples
@@ -116,20 +116,20 @@
-PyCTBN.PyCTBN.estimators package
+pyctbn.legacy.estimators package
-
-PyCTBN.PyCTBN.estimators.fam_score_calculator module
+
+pyctbn.legacy.estimators.fam_score_calculator module
-
-class PyCTBN.PyCTBN.estimators.fam_score_calculator.
FamScoreCalculator
+
+class pyctbn.legacy.estimators.fam_score_calculator.
FamScoreCalculator
Bases: object
Has the task of calculating the FamScore of a node by using a Bayesian score function
-
-get_fam_score
( cims : numpy.array , tau_xu : float = 0.1 , alpha_xu : float = 1 )
+
+get_fam_score
( cims : numpy.array , tau_xu : float = 0.1 , alpha_xu : float = 1 )
Calculate the FamScore value of the node
Parameters
@@ -149,8 +149,8 @@
-
-marginal_likelihood_q
( cims : numpy.array , tau_xu : float = 0.1 , alpha_xu : float = 1 )
+
+marginal_likelihood_q
( cims : numpy.array , tau_xu : float = 0.1 , alpha_xu : float = 1 )
Calculate the value of the marginal likelihood over q of the node identified by the label node_id
Parameters
@@ -170,8 +170,8 @@
-
-marginal_likelihood_theta
( cims : PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , alpha_xu : float , alpha_xxu : float )
+
+marginal_likelihood_theta
( cims : pyctbn.legacy.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , alpha_xu : float , alpha_xxu : float )
Calculate the FamScore value of the node identified by the label node_id
Parameters
@@ -191,8 +191,8 @@
-
-single_cim_xu_marginal_likelihood_q
( M_xu_suff_stats : float , T_xu_suff_stats : float , tau_xu : float = 0.1 , alpha_xu : float = 1 )
+
+single_cim_xu_marginal_likelihood_q
( M_xu_suff_stats : float , T_xu_suff_stats : float , tau_xu : float = 0.1 , alpha_xu : float = 1 )
Calculate the marginal likelihood on q of the node when assumes a specif value
and a specif parents’s assignment
@@ -215,8 +215,8 @@ and a specif parents’s assignment
-
-single_cim_xu_marginal_likelihood_theta
( index : int , cim : PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , alpha_xu : float , alpha_xxu : float )
+
+single_cim_xu_marginal_likelihood_theta
( index : int , cim : pyctbn.legacy.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , alpha_xu : float , alpha_xxu : float )
Calculate the marginal likelihood on q of the node when assumes a specif value
and a specif parents’s assignment
@@ -237,8 +237,8 @@ and a specif parents’s assignment
-
-single_internal_cim_xxu_marginal_likelihood_theta
( M_xxu_suff_stats : float , alpha_xxu : float = 1 )
+
+single_internal_cim_xxu_marginal_likelihood_theta
( M_xxu_suff_stats : float , alpha_xxu : float = 1 )
Calculate the second part of the marginal likelihood over theta formula
Parameters
@@ -257,8 +257,8 @@ and a specif parents’s assignment
-
-variable_cim_xu_marginal_likelihood_q
( cim : PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , tau_xu : float = 0.1 , alpha_xu : float = 1 )
+
+variable_cim_xu_marginal_likelihood_q
( cim : pyctbn.legacy.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , tau_xu : float = 0.1 , alpha_xu : float = 1 )
Calculate the value of the marginal likelihood over q given a cim
Parameters
@@ -278,8 +278,8 @@ and a specif parents’s assignment
-
-variable_cim_xu_marginal_likelihood_theta
( cim : PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , alpha_xu : float , alpha_xxu : float )
+
+variable_cim_xu_marginal_likelihood_theta
( cim : pyctbn.legacy.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , alpha_xu : float , alpha_xxu : float )
Calculate the value of the marginal likelihood over theta given a cim
Parameters
@@ -301,19 +301,19 @@ and a specif parents’s assignment
-
-PyCTBN.PyCTBN.estimators.parameters_estimator module
+
+pyctbn.legacy.estimators.parameters_estimator module
-
-class PyCTBN.PyCTBN.estimators.parameters_estimator.
ParametersEstimator
( trajectories : PyCTBN.PyCTBN.structure_graph.trajectory.Trajectory , net_graph : PyCTBN.PyCTBN.structure_graph.network_graph.NetworkGraph )
+
+class pyctbn.legacy.estimators.parameters_estimator.
ParametersEstimator
( trajectories : pyctbn.legacy.structure_graph.trajectory.Trajectory , net_graph : pyctbn.legacy.structure_graph.network_graph.NetworkGraph )
Bases: object
Has the task of computing the cims of particular node given the trajectories and the net structure
in the graph _net_graph
.
Parameters
_single_set_of_cims
@@ -321,8 +321,8 @@ in the graph _net_g
-
-compute_parameters_for_node
( node_id : str ) → PyCTBN.PyCTBN.structure_graph.set_of_cims.SetOfCims
+
+compute_parameters_for_node
( node_id : str ) → pyctbn.legacy.structure_graph.set_of_cims.SetOfCims
Compute the CIMS of the node identified by the label node_id
.
Parameters
@@ -332,14 +332,14 @@ in the graph _net_g
A SetOfCims object filled with the computed CIMS
Return type
-SetOfCims
+SetOfCims
-
-static compute_state_res_time_for_node
( times : numpy.ndarray , trajectory : numpy.ndarray , cols_filter : numpy.ndarray , scalar_indexes_struct : numpy.ndarray , T : numpy.ndarray ) → None
+
+static compute_state_res_time_for_node
( times : numpy.ndarray , trajectory : numpy.ndarray , cols_filter : numpy.ndarray , scalar_indexes_struct : numpy.ndarray , T : numpy.ndarray ) → None
Compute the state residence times for a node and fill the matrix T
with the results
Parameters
@@ -356,8 +356,8 @@ in the graph _net_g
-
-static compute_state_transitions_for_a_node
( node_indx : int , trajectory : numpy.ndarray , cols_filter : numpy.ndarray , scalar_indexing : numpy.ndarray , M : numpy.ndarray ) → None
+
+static compute_state_transitions_for_a_node
( node_indx : int , trajectory : numpy.ndarray , cols_filter : numpy.ndarray , scalar_indexing : numpy.ndarray , M : numpy.ndarray ) → None
Compute the state residence times for a node and fill the matrices M
with the results.
Parameters
@@ -373,8 +373,8 @@ in the graph _net_g
-
-fast_init
( node_id : str ) → None
+
+fast_init
( node_id : str ) → None
Initializes all the necessary structures for the parameters estimation for the node node_id
.
Parameters
@@ -386,17 +386,17 @@ in the graph _net_g
-
-PyCTBN.PyCTBN.estimators.structure_constraint_based_estimator module
+
+pyctbn.legacy.estimators.structure_constraint_based_estimator module
-
-class PyCTBN.PyCTBN.estimators.structure_constraint_based_estimator.
StructureConstraintBasedEstimator
( sample_path : PyCTBN.PyCTBN.structure_graph.sample_path.SamplePath , exp_test_alfa : float , chi_test_alfa : float , known_edges : List = [] , thumb_threshold : int = 25 )
-Bases: PyCTBN.PyCTBN.estimators.structure_estimator.StructureEstimator
+
+class pyctbn.legacy.estimators.structure_constraint_based_estimator.
StructureConstraintBasedEstimator
( sample_path : pyctbn.legacy.structure_graph.sample_path.SamplePath , exp_test_alfa : float , chi_test_alfa : float , known_edges : List = [] , thumb_threshold : int = 25 )
+Bases: pyctbn.legacy.estimators.structure_estimator.StructureEstimator
Has the task of estimating the network structure given the trajectories in samplepath by using a constraint-based approach.
Parameters
-sample_path (SamplePath ) – the _sample_path object containing the trajectories and the real structure
+sample_path (SamplePath ) – the _sample_path object containing the trajectories and the real structure
exp_test_alfa (float ) – the significance level for the exponential Hp test
chi_test_alfa (float ) – the significance level for the chi Hp test
known_edges (List ) – the prior known edges in the net structure if present
@@ -420,8 +420,8 @@ in the graph _net_g
-
-complete_test
( test_parent : str , test_child : str , parent_set : List , child_states_numb : int , tot_vars_count : int , parent_indx , child_indx ) → bool
+
+complete_test
( test_parent : str , test_child : str , parent_set : List , child_states_numb : int , tot_vars_count : int , parent_indx , child_indx ) → bool
Performs a complete independence test on the directed graphs G1 = {test_child U parent_set}
G2 = {G1 U test_parent} (added as an additional parent of the test_child).
Generates all the necessary structures and datas to perform the tests.
@@ -445,8 +445,8 @@ Generates all the necessary structures and datas to perform the tests.
-
-compute_thumb_value
( parent_val , child_val , parent_set_vals )
+
+compute_thumb_value
( parent_val , child_val , parent_set_vals )
Compute the value to test against the thumb_threshold.
Parameters
@@ -466,8 +466,8 @@ Generates all the necessary structures and datas to perform the tests.
-
-ctpc_algorithm
( disable_multiprocessing : bool = False , processes_number : int = None )
+
+ctpc_algorithm
( disable_multiprocessing : bool = False , processes_number : int = None )
Compute the CTPC algorithm over the entire net.
Parameters
@@ -482,8 +482,8 @@ Generates all the necessary structures and datas to perform the tests.
-
-estimate_structure
( disable_multiprocessing : bool = False , processes_number : int = None )
+
+estimate_structure
( disable_multiprocessing : bool = False , processes_number : int = None )
Compute the constraint-based algorithm to find the optimal structure
Parameters
@@ -498,8 +498,8 @@ Generates all the necessary structures and datas to perform the tests.
-
-independence_test
( child_states_numb : int , cim1 : PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , cim2 : PyCTBN.PyCTBN.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , thumb_value : float , parent_indx , child_indx ) → bool
+
+independence_test
( child_states_numb : int , cim1 : pyctbn.legacy.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , cim2 : pyctbn.legacy.structure_graph.conditional_intensity_matrix.ConditionalIntensityMatrix , thumb_value : float , parent_indx , child_indx ) → bool
Compute the actual independence test using two cims.
It is performed first the exponential test and if the null hypothesis is not rejected,
it is performed also the chi_test.
@@ -507,8 +507,8 @@ it is performed also the chi_test.
Parameters
Returns
@@ -521,8 +521,8 @@ it is performed also the chi_test.
-
-one_iteration_of_CTPC_algorithm
( var_id : str , tot_vars_count : int ) → List
+
+one_iteration_of_CTPC_algorithm
( var_id : str , tot_vars_count : int ) → List
Performs an iteration of the CTPC algorithm using the node var_id
as test_child
.
Parameters
@@ -534,17 +534,17 @@ it is performed also the chi_test.
-
-PyCTBN.PyCTBN.estimators.structure_estimator module
+
+pyctbn.legacy.estimators.structure_estimator module
-
-class PyCTBN.PyCTBN.estimators.structure_estimator.
StructureEstimator
( sample_path : PyCTBN.PyCTBN.structure_graph.sample_path.SamplePath , known_edges : List = None )
+
+class pyctbn.legacy.estimators.structure_estimator.
StructureEstimator
( sample_path : pyctbn.legacy.structure_graph.sample_path.SamplePath , known_edges : List = None )
Bases: object
Has the task of estimating the network structure given the trajectories in samplepath
.
Parameters
-sample_path (SamplePath ) – the _sample_path object containing the trajectories and the real structure
+sample_path (SamplePath ) – the _sample_path object containing the trajectories and the real structure
known_edges (List ) – the prior known edges in the net structure if present
@@ -562,8 +562,8 @@ it is performed also the chi_test.
-
-adjacency_matrix
( ) → numpy.ndarray
+
+adjacency_matrix
( ) → numpy.ndarray
Converts the estimated structure _complete_graph
to a boolean adjacency matrix representation.
Returns
@@ -576,8 +576,8 @@ it is performed also the chi_test.
-
-static build_complete_graph
( node_ids : List ) → networkx.classes.digraph.DiGraph
+
+static build_complete_graph
( node_ids : List ) → networkx.classes.digraph.DiGraph
Builds a complete directed graph (no self loops) given the nodes labels in the list node_ids
:
Parameters
@@ -593,8 +593,8 @@ it is performed also the chi_test.
-
-build_removable_edges_matrix
( known_edges : List )
+
+build_removable_edges_matrix
( known_edges : List )
Builds a boolean matrix who shows if a edge could be removed or not, based on prior knowledge given:
Parameters
@@ -610,8 +610,8 @@ it is performed also the chi_test.
-
-abstract estimate_structure
( ) → List
+
+abstract estimate_structure
( ) → List
Abstract method to estimate the structure
Returns
@@ -624,8 +624,8 @@ it is performed also the chi_test.
-
-static generate_possible_sub_sets_of_size
( u : List , size : int , parent_label : str )
+
+static generate_possible_sub_sets_of_size
( u : List , size : int , parent_label : str )
Creates a list containing all possible subsets of the list u
of size size
,
that do not contains a the node identified by parent_label
.
@@ -646,8 +646,8 @@ that do not contains a the node identified by
-
-save_plot_estimated_structure_graph
( file_path : str ) → None
+
+save_plot_estimated_structure_graph
( file_path : str ) → None
Plot the estimated structure in a graphical model style, use .png extension.
Parameters
@@ -660,8 +660,8 @@ that do not contains a the node identified by
-
-save_results
( file_path : str ) → None
+
+save_results
( file_path : str ) → None
Save the estimated Structure to a .json file in file_path.
Parameters
@@ -671,8 +671,8 @@ that do not contains a the node identified by
-
-spurious_edges
( ) → List
+
+spurious_edges
( ) → List
Return the spurious edges present in the estimated structure, if a prior net structure is present in _sample_path.structure
.
@@ -690,18 +690,18 @@ that do not contains a the node identified by
-PyCTBN.PyCTBN.estimators.structure_score_based_estimator module
+
+pyctbn.legacy.estimators.structure_score_based_estimator module
-
-class PyCTBN.PyCTBN.estimators.structure_score_based_estimator.
StructureScoreBasedEstimator
( sample_path : PyCTBN.PyCTBN.structure_graph.sample_path.SamplePath , tau_xu : int = 0.1 , alpha_xu : int = 1 , known_edges : List = [] )
-Bases: PyCTBN.PyCTBN.estimators.structure_estimator.StructureEstimator
+
+class pyctbn.legacy.estimators.structure_score_based_estimator.
StructureScoreBasedEstimator
( sample_path : pyctbn.legacy.structure_graph.sample_path.SamplePath , tau_xu : int = 0.1 , alpha_xu : int = 1 , known_edges : List = [] )
+Bases: pyctbn.legacy.estimators.structure_estimator.StructureEstimator
Has the task of estimating the network structure given the trajectories in samplepath by
using a score based approach and differt kinds of optimization algorithms.
Parameters
-sample_path (SamplePath ) – the _sample_path object containing the trajectories and the real structure
+sample_path (SamplePath ) – the _sample_path object containing the trajectories and the real structure
tau_xu (float , optional ) – hyperparameter over the CTBN’s q parameters, default to 0.1
alpha_xu (float , optional ) – hyperparameter over the CTBN’s q parameters, default to 1
known_edges (List , optional ) – List of known edges, default to []
@@ -709,8 +709,8 @@ using a score based approach and differt kinds of optimization algorithms.
-
-estimate_parents
( node_id : str , max_parents : int = None , iterations_number : int = 40 , patience : int = 10 , tabu_length : int = None , tabu_rules_duration : int = 5 , optimizer : str = 'hill' )
+
+estimate_parents
( node_id : str , max_parents : int = None , iterations_number : int = 40 , patience : int = 10 , tabu_length : int = None , tabu_rules_duration : int = 5 , optimizer : str = 'hill' )
Use the FamScore of a node in order to find the best parent nodes
Parameters
@@ -734,8 +734,8 @@ using a score based approach and differt kinds of optimization algorithms.
-
-estimate_structure
( max_parents : int = None , iterations_number : int = 40 , patience : int = None , tabu_length : int = None , tabu_rules_duration : int = None , optimizer : str = 'tabu' , disable_multiprocessing : bool = False , processes_number : int = None )
+
+estimate_structure
( max_parents : int = None , iterations_number : int = 40 , patience : int = None , tabu_length : int = None , tabu_rules_duration : int = None , optimizer : str = 'tabu' , disable_multiprocessing : bool = False , processes_number : int = None )
Compute the score-based algorithm to find the optimal structure
Parameters
@@ -756,8 +756,8 @@ using a score based approach and differt kinds of optimization algorithms.
-
-get_score_from_graph
( graph : PyCTBN.PyCTBN.structure_graph.network_graph.NetworkGraph , node_id : str )
+
+get_score_from_graph
( graph : pyctbn.legacy.structure_graph.network_graph.NetworkGraph , node_id : str )
Get the FamScore of a node
Parameters
@@ -778,8 +778,8 @@ using a score based approach and differt kinds of optimization algorithms.
-
@@ -789,10 +789,10 @@ using a score based approach and differt kinds of optimization algorithms.
diff --git a/docs-out/_build/html/PyCTBN.PyCTBN.html b/docs/_build/html/PyCTBN.PyCTBN.html
similarity index 50%
rename from docs-out/_build/html/PyCTBN.PyCTBN.html
rename to docs/_build/html/PyCTBN.PyCTBN.html
index 29ef30a..4f020cc 100644
--- a/docs-out/_build/html/PyCTBN.PyCTBN.html
+++ b/docs/_build/html/PyCTBN.PyCTBN.html
@@ -8,7 +8,7 @@
- PyCTBN.PyCTBN package — PyCTBN 2.0 documentation
+ pyctbn.legacy package — PyCTBN 2.0 documentation
@@ -27,7 +27,7 @@
href="genindex.html"/>
-
+
@@ -62,9 +62,9 @@
Contents: