From a179dd3498b53a24804fb09d961466dd5303a89d Mon Sep 17 00:00:00 2001 From: philipMartini <45294280+philipMartini@users.noreply.github.com> Date: Sun, 21 Mar 2021 13:03:57 +0100 Subject: [PATCH] Update README.rst --- README.rst | 41 ++--------------------------------------- 1 file changed, 2 insertions(+), 39 deletions(-) diff --git a/README.rst b/README.rst index 02ccd6e..df54db8 100644 --- a/README.rst +++ b/README.rst @@ -18,9 +18,11 @@ Implementing your own data importer | This example demonstrates the implementation of a simple data importer the extends the class AbstractImporter | to import data in csv format. The net in exam has three ternary nodes and no prior net structure. | Suppose the trajectories that have to be inported have this structure: + .. image:: docs-out/esempio_dataset.png :width: 600 :alt: An example trajectory to be imported. + | In the read_csv_file method the data are imported in memory, put in a list and assigned to the _df_samples_list class | member, so that it contains all the trajectories to be processed. | In the import_variables method the dataframe containing the nodes labels and the cardinalities of the nodes @@ -82,45 +84,6 @@ Implementing your own data importer #...and the Structure object with all the process data s1.build_structure() -Parameters Estimation Example -***************************** - -.. code-block:: python - - from PyCTBN import JsonImporter - from PyCTBN import SamplePath - from PyCTBN import NetworkGraph - from PyCTBN import ParametersEstimator - - - def main(): - read_files = glob.glob(os.path.join('./data', "*.json")) #Take all json files in this dir - #import data - importer = JsonImporter(read_files[0], 'samples', 'dyn.str', 'variables', 'Time', 'Name') - importer.import_data(0) - #Create a SamplePath Obj passing an already filled AbstractImporter object - s1 = SamplePath(importer) - #Build The trajectries and the structural infos - s1.build_trajectories() - s1.build_structure() - print(s1.structure.edges) - print(s1.structure.nodes_values) - #From The Structure Object build the Graph - g = NetworkGraph(s1.structure) - #Select a node you want to estimate the parameters - node = g.nodes[2] - print("Node", node) - #Init the _graph specifically for THIS node - g.fast_init(node) - #Use SamplePath and Grpah to create a ParametersEstimator Object - p1 = ParametersEstimator(s1.trajectories, g) - #Init the peEst specifically for THIS node - p1.fast_init(node) - #Compute the parameters - sofc1 = p1.compute_parameters_for_node(node) - #The est CIMS are inside the resultant SetOfCIms Obj - print(sofc1.actual_cims) - Structure Estimation Examples **************************** | This example shows how to estimate the structure given a series of trajectories using a constraint based approach.