|
|
|
@ -47,7 +47,7 @@ class StructureScoreBasedEstimator(se.StructureEstimator): |
|
|
|
|
super().__init__(sample_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@timing |
|
|
|
|
def estimate_structure(self, max_parents:int = None, iterations_number:int= 40, patience:int = None ): |
|
|
|
|
""" |
|
|
|
|
Compute the score-based algorithm to find the optimal structure |
|
|
|
@ -79,19 +79,22 @@ class StructureScoreBasedEstimator(se.StructureEstimator): |
|
|
|
|
'get the number of CPU' |
|
|
|
|
cpu_count = multiprocessing.cpu_count() |
|
|
|
|
|
|
|
|
|
#cpu_count = 1 |
|
|
|
|
|
|
|
|
|
'Estimate the best parents for each node' |
|
|
|
|
with multiprocessing.Pool(processes=cpu_count) as pool: |
|
|
|
|
list_edges_partial = pool.starmap(estimate_parents, zip(self.nodes,l_max_parents,l_iterations_number,l_patience)) |
|
|
|
|
#list_edges_partial = [estimate_parents(n,max_parents,iterations_number,patience) for n in self.nodes] |
|
|
|
|
#list_edges_partial = p.map(estimate_parents, self.nodes) |
|
|
|
|
#list_edges_partial= estimate_parents('Y',max_parents,iterations_number,patience) |
|
|
|
|
|
|
|
|
|
'Concatenate all the edges list' |
|
|
|
|
set_list_edges = set(itertools.chain.from_iterable(list_edges_partial)) |
|
|
|
|
|
|
|
|
|
print('-------------------------') |
|
|
|
|
#print('-------------------------') |
|
|
|
|
|
|
|
|
|
'TODO: Pensare a un modo migliore -- set difference sembra non funzionare ' |
|
|
|
|
|
|
|
|
|
'calculate precision and recall' |
|
|
|
|
n_missing_edges = 0 |
|
|
|
|
n_added_fake_edges = 0 |
|
|
|
|
|
|
|
|
@ -117,12 +120,14 @@ class StructureScoreBasedEstimator(se.StructureEstimator): |
|
|
|
|
# print(true_edge) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"n archi reali non trovati: {n_missing_edges}") |
|
|
|
|
print(f"n archi non reali aggiunti: {n_added_fake_edges}") |
|
|
|
|
# print(f"n archi reali non trovati: {n_missing_edges}") |
|
|
|
|
# print(f"n archi non reali aggiunti: {n_added_fake_edges}") |
|
|
|
|
print(true_edges) |
|
|
|
|
print(set_list_edges) |
|
|
|
|
print(f"precision: {precision} ") |
|
|
|
|
print(f"recall: {recall} ") |
|
|
|
|
|
|
|
|
|
return set_list_edges |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def estimate_parents(self,node_id:str, max_parents:int = None, iterations_number:int= 40, patience:int = 10 ): |
|
|
|
@ -163,9 +168,10 @@ class StructureScoreBasedEstimator(se.StructureEstimator): |
|
|
|
|
graph.remove_edges([parent_removed]) |
|
|
|
|
graph.add_edges([current_edge]) |
|
|
|
|
added = True |
|
|
|
|
|
|
|
|
|
#print('**************************') |
|
|
|
|
current_score = self.get_score_from_graph(graph,node_id) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if current_score > actual_best_score: |
|
|
|
|
'update current best score' |
|
|
|
|
actual_best_score = current_score |
|
|
|
|