1
0
Fork 0

Added max_parets and patience costraints

master
Luca Moretti 4 years ago
parent b0f9dd4bc9
commit 46ab383b07
  1. 76
      main_package/classes/structure_score_based_estimator.py
  2. 6
      main_package/tests/test_structure_score_based_estimator.py

@ -19,6 +19,11 @@ import structure as st
import fam_score_calculator as fam_score
import multiprocessing
from multiprocessing import Pool
'''
#TODO: Insert maximum number of parents
#TODO: Insert maximum number of iteration or other exit criterions
@ -64,37 +69,71 @@ class StructureScoreBasedEstimator:
def estimate_structure(self):
def estimate_structure(self, max_parents:int = None, iterations_number:int= 40, patience:int = None ):
"""
Compute the score-based algorithm to find the optimal structure
Parameters:
max_parents: maximum number of parents for each variable. If None, disabled
iterations_number: maximum number of optimization algorithm's iteration
patience: number of iteration without any improvement before to stop the search.If None, disabled
Returns:
void
"""
'Save the true edges structure in tuples'
true_edges = copy.deepcopy(self.sample_path.structure.edges)
true_edges = list(map(tuple, true_edges))
'Remove all the edges from the structure'
print( self.sample_path.structure.edges)
print( type(self.sample_path.structure.edges))
print( type(self.sample_path.structure.edges[0]))
self.sample_path.structure.clean_structure_edges()
estimate_parents = self.estimate_parents
'Estimate the best parents for each node'
list_edges_partial = [estimate_parents(n) for n in self.nodes]
n_nodes= len(self.nodes)
l_max_parents= [max_parents] * n_nodes
l_iterations_number = [iterations_number] * n_nodes
l_patience = [patience] * n_nodes
'Estimate the best parents for each node'
with multiprocessing.Pool(processes=4) as pool:
list_edges_partial = pool.starmap(estimate_parents, zip(self.nodes,l_max_parents,l_iterations_number,l_patience))
#list_edges_partial = [estimate_parents(n) for n in self.nodes]
#list_edges_partial = p.map(estimate_parents, self.nodes)
'Concatenate all the edges list'
list_edges = list(itertools.chain.from_iterable(list_edges_partial))
print('-------------------------')
'TODO: Pensare a un modo migliore -- set difference sembra non funzionare '
n_missing_edges = 0
n_added_fake_edges = 0
for estimate_edge in list_edges:
if not estimate_edge in true_edges:
n_added_fake_edges += 1
for true_edge in true_edges:
if not true_edge in list_edges:
n_missing_edges += 1
print(f"n archi reali non trovati: {n_missing_edges}")
print(f"n archi non reali aggiunti: {n_added_fake_edges}")
print(true_edges)
print(list_edges)
def estimate_parents(self,node_id:str):
def estimate_parents(self,node_id:str, max_parents:int = None, iterations_number:int= 40, patience:int = 10 ):
"""
Use the FamScore of a node in order to find the best parent nodes
Parameters:
node_id: current node's id
max_parents: maximum number of parents for each variable. If None, disabled
iterations_number: maximum number of optimization algorithm's iteration
patience: number of iteration without any improvement before to stop the search.If None, disabled
Returns:
A list of the best edges for the currente node
"""
@ -105,15 +144,24 @@ class StructureScoreBasedEstimator:
other_nodes = [node for node in self.sample_path.structure.nodes_labels if node != node_id]
actual_best_score = self.get_score_from_structure(graph,node_id)
for i in range(40):
patince_count = 0
for i in range(iterations_number):
'choose a new random edge'
current_new_parent = choice(other_nodes)
current_edge = (current_new_parent,node_id)
added = False
parent_removed = None
if graph.has_edge(current_edge):
graph.remove_edges([current_edge])
else:
'check the max_parents constraint'
if max_parents is not None:
parents_list = graph.get_parents_by_id(node_id)
if len(parents_list) >= max_parents :
parent_removed = (choice(parents_list), node_id)
graph.remove_edges([parent_removed])
graph.add_edges([current_edge])
added = True
@ -122,13 +170,23 @@ class StructureScoreBasedEstimator:
if current_score > actual_best_score:
'update current best score'
actual_best_score = current_score
patince_count = 0
else:
'undo the last update'
if added:
graph.remove_edges([current_edge])
'If a parent was removed, add it again to the graph'
if parent_removed is not None:
graph.add_edges([parent_removed])
else:
graph.add_edges([current_edge])
'update patience count'
patince_count += 1
if patience is not None and patince_count > patience:
break
print(f"finito variabile: {node_id}")
return graph.edges

@ -31,7 +31,11 @@ class TestStructureScoreBasedEstimator(unittest.TestCase):
def test_esecuzione(self):
se1 = se.StructureScoreBasedEstimator(self.s1)
se1.estimate_structure()
se1.estimate_structure(
max_parents = 5,
iterations_number = 80,
patience = None
)
if __name__ == '__main__':
unittest.main()