Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
118 lines
3.5 KiB
118 lines
3.5 KiB
4 years ago
|
import pytest
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_, assert_equal, assert_allclose
|
||
|
|
||
|
import scipy.special as sc
|
||
|
from scipy.special._testutils import assert_func_equal
|
||
|
|
||
|
|
||
|
def test_wrightomega_nan():
|
||
|
pts = [complex(np.nan, 0),
|
||
|
complex(0, np.nan),
|
||
|
complex(np.nan, np.nan),
|
||
|
complex(np.nan, 1),
|
||
|
complex(1, np.nan)]
|
||
|
for p in pts:
|
||
|
res = sc.wrightomega(p)
|
||
|
assert_(np.isnan(res.real))
|
||
|
assert_(np.isnan(res.imag))
|
||
|
|
||
|
|
||
|
def test_wrightomega_inf_branch():
|
||
|
pts = [complex(-np.inf, np.pi/4),
|
||
|
complex(-np.inf, -np.pi/4),
|
||
|
complex(-np.inf, 3*np.pi/4),
|
||
|
complex(-np.inf, -3*np.pi/4)]
|
||
|
expected_results = [complex(0.0, 0.0),
|
||
|
complex(0.0, -0.0),
|
||
|
complex(-0.0, 0.0),
|
||
|
complex(-0.0, -0.0)]
|
||
|
for p, expected in zip(pts, expected_results):
|
||
|
res = sc.wrightomega(p)
|
||
|
# We can't use assert_equal(res, expected) because in older versions of
|
||
|
# numpy, assert_equal doesn't check the sign of the real and imaginary
|
||
|
# parts when comparing complex zeros. It does check the sign when the
|
||
|
# arguments are *real* scalars.
|
||
|
assert_equal(res.real, expected.real)
|
||
|
assert_equal(res.imag, expected.imag)
|
||
|
|
||
|
|
||
|
def test_wrightomega_inf():
|
||
|
pts = [complex(np.inf, 10),
|
||
|
complex(-np.inf, 10),
|
||
|
complex(10, np.inf),
|
||
|
complex(10, -np.inf)]
|
||
|
for p in pts:
|
||
|
assert_equal(sc.wrightomega(p), p)
|
||
|
|
||
|
|
||
|
def test_wrightomega_singular():
|
||
|
pts = [complex(-1.0, np.pi),
|
||
|
complex(-1.0, -np.pi)]
|
||
|
for p in pts:
|
||
|
res = sc.wrightomega(p)
|
||
|
assert_equal(res, -1.0)
|
||
|
assert_(np.signbit(res.imag) == False)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('x, desired', [
|
||
|
(-np.inf, 0),
|
||
|
(np.inf, np.inf),
|
||
|
])
|
||
|
def test_wrightomega_real_infinities(x, desired):
|
||
|
assert sc.wrightomega(x) == desired
|
||
|
|
||
|
|
||
|
def test_wrightomega_real_nan():
|
||
|
assert np.isnan(sc.wrightomega(np.nan))
|
||
|
|
||
|
|
||
|
def test_wrightomega_real_series_crossover():
|
||
|
desired_error = 2 * np.finfo(float).eps
|
||
|
crossover = 1e20
|
||
|
x_before_crossover = np.nextafter(crossover, -np.inf)
|
||
|
x_after_crossover = np.nextafter(crossover, np.inf)
|
||
|
# Computed using Mpmath
|
||
|
desired_before_crossover = 99999999999999983569.948
|
||
|
desired_after_crossover = 100000000000000016337.948
|
||
|
assert_allclose(
|
||
|
sc.wrightomega(x_before_crossover),
|
||
|
desired_before_crossover,
|
||
|
atol=0,
|
||
|
rtol=desired_error,
|
||
|
)
|
||
|
assert_allclose(
|
||
|
sc.wrightomega(x_after_crossover),
|
||
|
desired_after_crossover,
|
||
|
atol=0,
|
||
|
rtol=desired_error,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_wrightomega_exp_approximation_crossover():
|
||
|
desired_error = 2 * np.finfo(float).eps
|
||
|
crossover = -50
|
||
|
x_before_crossover = np.nextafter(crossover, np.inf)
|
||
|
x_after_crossover = np.nextafter(crossover, -np.inf)
|
||
|
# Computed using Mpmath
|
||
|
desired_before_crossover = 1.9287498479639314876e-22
|
||
|
desired_after_crossover = 1.9287498479639040784e-22
|
||
|
assert_allclose(
|
||
|
sc.wrightomega(x_before_crossover),
|
||
|
desired_before_crossover,
|
||
|
atol=0,
|
||
|
rtol=desired_error,
|
||
|
)
|
||
|
assert_allclose(
|
||
|
sc.wrightomega(x_after_crossover),
|
||
|
desired_after_crossover,
|
||
|
atol=0,
|
||
|
rtol=desired_error,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_wrightomega_real_versus_complex():
|
||
|
x = np.linspace(-500, 500, 1001)
|
||
|
results = sc.wrightomega(x + 0j).real
|
||
|
assert_func_equal(sc.wrightomega, results, x, atol=0, rtol=1e-14)
|