Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
3.2 KiB
113 lines
3.2 KiB
4 years ago
|
import numpy as np
|
||
|
import scipy.special as sc
|
||
|
import pytest
|
||
|
from numpy.testing import assert_allclose, assert_array_equal, suppress_warnings
|
||
|
|
||
|
|
||
|
class TestBdtr(object):
|
||
|
def test(self):
|
||
|
val = sc.bdtr(0, 1, 0.5)
|
||
|
assert_allclose(val, 0.5)
|
||
|
|
||
|
def test_sum_is_one(self):
|
||
|
val = sc.bdtr([0, 1, 2], 2, 0.5)
|
||
|
assert_array_equal(val, [0.25, 0.75, 1.0])
|
||
|
|
||
|
def test_rounding(self):
|
||
|
double_val = sc.bdtr([0.1, 1.1, 2.1], 2, 0.5)
|
||
|
int_val = sc.bdtr([0, 1, 2], 2, 0.5)
|
||
|
assert_array_equal(double_val, int_val)
|
||
|
|
||
|
@pytest.mark.parametrize('k, n, p', [
|
||
|
(np.inf, 2, 0.5),
|
||
|
(1.0, np.inf, 0.5),
|
||
|
(1.0, 2, np.inf)
|
||
|
])
|
||
|
def test_inf(self, k, n, p):
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(DeprecationWarning)
|
||
|
val = sc.bdtr(k, n, p)
|
||
|
assert np.isnan(val)
|
||
|
|
||
|
def test_domain(self):
|
||
|
val = sc.bdtr(-1.1, 1, 0.5)
|
||
|
assert np.isnan(val)
|
||
|
|
||
|
|
||
|
class TestBdtrc(object):
|
||
|
def test_value(self):
|
||
|
val = sc.bdtrc(0, 1, 0.5)
|
||
|
assert_allclose(val, 0.5)
|
||
|
|
||
|
def test_sum_is_one(self):
|
||
|
val = sc.bdtrc([0, 1, 2], 2, 0.5)
|
||
|
assert_array_equal(val, [0.75, 0.25, 0.0])
|
||
|
|
||
|
def test_rounding(self):
|
||
|
double_val = sc.bdtrc([0.1, 1.1, 2.1], 2, 0.5)
|
||
|
int_val = sc.bdtrc([0, 1, 2], 2, 0.5)
|
||
|
assert_array_equal(double_val, int_val)
|
||
|
|
||
|
@pytest.mark.parametrize('k, n, p', [
|
||
|
(np.inf, 2, 0.5),
|
||
|
(1.0, np.inf, 0.5),
|
||
|
(1.0, 2, np.inf)
|
||
|
])
|
||
|
def test_inf(self, k, n, p):
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(DeprecationWarning)
|
||
|
val = sc.bdtrc(k, n, p)
|
||
|
assert np.isnan(val)
|
||
|
|
||
|
def test_domain(self):
|
||
|
val = sc.bdtrc(-1.1, 1, 0.5)
|
||
|
val2 = sc.bdtrc(2.1, 1, 0.5)
|
||
|
assert np.isnan(val2)
|
||
|
assert_allclose(val, 1.0)
|
||
|
|
||
|
def test_bdtr_bdtrc_sum_to_one(self):
|
||
|
bdtr_vals = sc.bdtr([0, 1, 2], 2, 0.5)
|
||
|
bdtrc_vals = sc.bdtrc([0, 1, 2], 2, 0.5)
|
||
|
vals = bdtr_vals + bdtrc_vals
|
||
|
assert_allclose(vals, [1.0, 1.0, 1.0])
|
||
|
|
||
|
|
||
|
class TestBdtri(object):
|
||
|
def test_value(self):
|
||
|
val = sc.bdtri(0, 1, 0.5)
|
||
|
assert_allclose(val, 0.5)
|
||
|
|
||
|
def test_sum_is_one(self):
|
||
|
val = sc.bdtri([0, 1], 2, 0.5)
|
||
|
actual = np.asarray([1 - 1/np.sqrt(2), 1/np.sqrt(2)])
|
||
|
assert_allclose(val, actual)
|
||
|
|
||
|
def test_rounding(self):
|
||
|
double_val = sc.bdtri([0.1, 1.1], 2, 0.5)
|
||
|
int_val = sc.bdtri([0, 1], 2, 0.5)
|
||
|
assert_allclose(double_val, int_val)
|
||
|
|
||
|
@pytest.mark.parametrize('k, n, p', [
|
||
|
(np.inf, 2, 0.5),
|
||
|
(1.0, np.inf, 0.5),
|
||
|
(1.0, 2, np.inf)
|
||
|
])
|
||
|
def test_inf(self, k, n, p):
|
||
|
with suppress_warnings() as sup:
|
||
|
sup.filter(DeprecationWarning)
|
||
|
val = sc.bdtri(k, n, p)
|
||
|
assert np.isnan(val)
|
||
|
|
||
|
@pytest.mark.parametrize('k, n, p', [
|
||
|
(-1.1, 1, 0.5),
|
||
|
(2.1, 1, 0.5)
|
||
|
])
|
||
|
def test_domain(self, k, n, p):
|
||
|
val = sc.bdtri(k, n, p)
|
||
|
assert np.isnan(val)
|
||
|
|
||
|
def test_bdtr_bdtri_roundtrip(self):
|
||
|
bdtr_vals = sc.bdtr([0, 1, 2], 2, 0.5)
|
||
|
roundtrip_vals = sc.bdtri([0, 1, 2], 2, bdtr_vals)
|
||
|
assert_allclose(roundtrip_vals, [0.5, 0.5, np.nan])
|