Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
5.1 KiB
208 lines
5.1 KiB
4 years ago
|
import numpy as np
|
||
|
|
||
|
from ._ufuncs import _ellip_harm
|
||
|
from ._ellip_harm_2 import _ellipsoid, _ellipsoid_norm
|
||
|
|
||
|
|
||
|
def ellip_harm(h2, k2, n, p, s, signm=1, signn=1):
|
||
|
r"""
|
||
|
Ellipsoidal harmonic functions E^p_n(l)
|
||
|
|
||
|
These are also known as Lame functions of the first kind, and are
|
||
|
solutions to the Lame equation:
|
||
|
|
||
|
.. math:: (s^2 - h^2)(s^2 - k^2)E''(s) + s(2s^2 - h^2 - k^2)E'(s) + (a - q s^2)E(s) = 0
|
||
|
|
||
|
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
|
||
|
returned) corresponding to the solutions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
h2 : float
|
||
|
``h**2``
|
||
|
k2 : float
|
||
|
``k**2``; should be larger than ``h**2``
|
||
|
n : int
|
||
|
Degree
|
||
|
s : float
|
||
|
Coordinate
|
||
|
p : int
|
||
|
Order, can range between [1,2n+1]
|
||
|
signm : {1, -1}, optional
|
||
|
Sign of prefactor of functions. Can be +/-1. See Notes.
|
||
|
signn : {1, -1}, optional
|
||
|
Sign of prefactor of functions. Can be +/-1. See Notes.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
E : float
|
||
|
the harmonic :math:`E^p_n(s)`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellip_harm_2, ellip_normal
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The geometric interpretation of the ellipsoidal functions is
|
||
|
explained in [2]_, [3]_, [4]_. The `signm` and `signn` arguments control the
|
||
|
sign of prefactors for functions according to their type::
|
||
|
|
||
|
K : +1
|
||
|
L : signm
|
||
|
M : signn
|
||
|
N : signm*signn
|
||
|
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Digital Library of Mathematical Functions 29.12
|
||
|
https://dlmf.nist.gov/29.12
|
||
|
.. [2] Bardhan and Knepley, "Computational science and
|
||
|
re-discovery: open-source implementations of
|
||
|
ellipsoidal harmonics for problems in potential theory",
|
||
|
Comput. Sci. Disc. 5, 014006 (2012)
|
||
|
:doi:`10.1088/1749-4699/5/1/014006`.
|
||
|
.. [3] David J.and Dechambre P, "Computation of Ellipsoidal
|
||
|
Gravity Field Harmonics for small solar system bodies"
|
||
|
pp. 30-36, 2000
|
||
|
.. [4] George Dassios, "Ellipsoidal Harmonics: Theory and Applications"
|
||
|
pp. 418, 2012
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import ellip_harm
|
||
|
>>> w = ellip_harm(5,8,1,1,2.5)
|
||
|
>>> w
|
||
|
2.5
|
||
|
|
||
|
Check that the functions indeed are solutions to the Lame equation:
|
||
|
|
||
|
>>> from scipy.interpolate import UnivariateSpline
|
||
|
>>> def eigenvalue(f, df, ddf):
|
||
|
... r = ((s**2 - h**2)*(s**2 - k**2)*ddf + s*(2*s**2 - h**2 - k**2)*df - n*(n+1)*s**2*f)/f
|
||
|
... return -r.mean(), r.std()
|
||
|
>>> s = np.linspace(0.1, 10, 200)
|
||
|
>>> k, h, n, p = 8.0, 2.2, 3, 2
|
||
|
>>> E = ellip_harm(h**2, k**2, n, p, s)
|
||
|
>>> E_spl = UnivariateSpline(s, E)
|
||
|
>>> a, a_err = eigenvalue(E_spl(s), E_spl(s,1), E_spl(s,2))
|
||
|
>>> a, a_err
|
||
|
(583.44366156701483, 6.4580890640310646e-11)
|
||
|
|
||
|
"""
|
||
|
return _ellip_harm(h2, k2, n, p, s, signm, signn)
|
||
|
|
||
|
|
||
|
_ellip_harm_2_vec = np.vectorize(_ellipsoid, otypes='d')
|
||
|
|
||
|
|
||
|
def ellip_harm_2(h2, k2, n, p, s):
|
||
|
r"""
|
||
|
Ellipsoidal harmonic functions F^p_n(l)
|
||
|
|
||
|
These are also known as Lame functions of the second kind, and are
|
||
|
solutions to the Lame equation:
|
||
|
|
||
|
.. math:: (s^2 - h^2)(s^2 - k^2)F''(s) + s(2s^2 - h^2 - k^2)F'(s) + (a - q s^2)F(s) = 0
|
||
|
|
||
|
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
|
||
|
returned) corresponding to the solutions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
h2 : float
|
||
|
``h**2``
|
||
|
k2 : float
|
||
|
``k**2``; should be larger than ``h**2``
|
||
|
n : int
|
||
|
Degree.
|
||
|
p : int
|
||
|
Order, can range between [1,2n+1].
|
||
|
s : float
|
||
|
Coordinate
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
F : float
|
||
|
The harmonic :math:`F^p_n(s)`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Lame functions of the second kind are related to the functions of the first kind:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
F^p_n(s)=(2n + 1)E^p_n(s)\int_{0}^{1/s}\frac{du}{(E^p_n(1/u))^2\sqrt{(1-u^2k^2)(1-u^2h^2)}}
|
||
|
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellip_harm, ellip_normal
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import ellip_harm_2
|
||
|
>>> w = ellip_harm_2(5,8,2,1,10)
|
||
|
>>> w
|
||
|
0.00108056853382
|
||
|
|
||
|
"""
|
||
|
with np.errstate(all='ignore'):
|
||
|
return _ellip_harm_2_vec(h2, k2, n, p, s)
|
||
|
|
||
|
|
||
|
def _ellip_normal_vec(h2, k2, n, p):
|
||
|
return _ellipsoid_norm(h2, k2, n, p)
|
||
|
|
||
|
|
||
|
_ellip_normal_vec = np.vectorize(_ellip_normal_vec, otypes='d')
|
||
|
|
||
|
|
||
|
def ellip_normal(h2, k2, n, p):
|
||
|
r"""
|
||
|
Ellipsoidal harmonic normalization constants gamma^p_n
|
||
|
|
||
|
The normalization constant is defined as
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
\gamma^p_n=8\int_{0}^{h}dx\int_{h}^{k}dy\frac{(y^2-x^2)(E^p_n(y)E^p_n(x))^2}{\sqrt((k^2-y^2)(y^2-h^2)(h^2-x^2)(k^2-x^2)}
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
h2 : float
|
||
|
``h**2``
|
||
|
k2 : float
|
||
|
``k**2``; should be larger than ``h**2``
|
||
|
n : int
|
||
|
Degree.
|
||
|
p : int
|
||
|
Order, can range between [1,2n+1].
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
gamma : float
|
||
|
The normalization constant :math:`\gamma^p_n`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
ellip_harm, ellip_harm_2
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 0.15.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.special import ellip_normal
|
||
|
>>> w = ellip_normal(5,8,3,7)
|
||
|
>>> w
|
||
|
1723.38796997
|
||
|
|
||
|
"""
|
||
|
with np.errstate(all='ignore'):
|
||
|
return _ellip_normal_vec(h2, k2, n, p)
|