Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2129 lines
74 KiB
2129 lines
74 KiB
4 years ago
|
import re
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
import scipy.linalg
|
||
|
from scipy._lib._util import check_random_state
|
||
|
from ._rotation_groups import create_group
|
||
|
|
||
|
|
||
|
_AXIS_TO_IND = {'x': 0, 'y': 1, 'z': 2}
|
||
|
|
||
|
|
||
|
def _elementary_basis_vector(axis):
|
||
|
b = np.zeros(3)
|
||
|
b[_AXIS_TO_IND[axis]] = 1
|
||
|
return b
|
||
|
|
||
|
|
||
|
def _compute_euler_from_matrix(matrix, seq, extrinsic=False):
|
||
|
# The algorithm assumes intrinsic frame transformations. The algorithm
|
||
|
# in the paper is formulated for rotation matrices which are transposition
|
||
|
# rotation matrices used within Rotation.
|
||
|
# Adapt the algorithm for our case by
|
||
|
# 1. Instead of transposing our representation, use the transpose of the
|
||
|
# O matrix as defined in the paper, and be careful to swap indices
|
||
|
# 2. Reversing both axis sequence and angles for extrinsic rotations
|
||
|
|
||
|
if extrinsic:
|
||
|
seq = seq[::-1]
|
||
|
|
||
|
if matrix.ndim == 2:
|
||
|
matrix = matrix[None, :, :]
|
||
|
num_rotations = matrix.shape[0]
|
||
|
|
||
|
# Step 0
|
||
|
# Algorithm assumes axes as column vectors, here we use 1D vectors
|
||
|
n1 = _elementary_basis_vector(seq[0])
|
||
|
n2 = _elementary_basis_vector(seq[1])
|
||
|
n3 = _elementary_basis_vector(seq[2])
|
||
|
|
||
|
# Step 2
|
||
|
sl = np.dot(np.cross(n1, n2), n3)
|
||
|
cl = np.dot(n1, n3)
|
||
|
|
||
|
# angle offset is lambda from the paper referenced in [2] from docstring of
|
||
|
# `as_euler` function
|
||
|
offset = np.arctan2(sl, cl)
|
||
|
c = np.vstack((n2, np.cross(n1, n2), n1))
|
||
|
|
||
|
# Step 3
|
||
|
rot = np.array([
|
||
|
[1, 0, 0],
|
||
|
[0, cl, sl],
|
||
|
[0, -sl, cl],
|
||
|
])
|
||
|
res = np.einsum('...ij,...jk->...ik', c, matrix)
|
||
|
matrix_transformed = np.einsum('...ij,...jk->...ik', res, c.T.dot(rot))
|
||
|
|
||
|
# Step 4
|
||
|
angles = np.empty((num_rotations, 3))
|
||
|
# Ensure less than unit norm
|
||
|
positive_unity = matrix_transformed[:, 2, 2] > 1
|
||
|
negative_unity = matrix_transformed[:, 2, 2] < -1
|
||
|
matrix_transformed[positive_unity, 2, 2] = 1
|
||
|
matrix_transformed[negative_unity, 2, 2] = -1
|
||
|
angles[:, 1] = np.arccos(matrix_transformed[:, 2, 2])
|
||
|
|
||
|
# Steps 5, 6
|
||
|
eps = 1e-7
|
||
|
safe1 = (np.abs(angles[:, 1]) >= eps)
|
||
|
safe2 = (np.abs(angles[:, 1] - np.pi) >= eps)
|
||
|
|
||
|
# Step 4 (Completion)
|
||
|
angles[:, 1] += offset
|
||
|
|
||
|
# 5b
|
||
|
safe_mask = np.logical_and(safe1, safe2)
|
||
|
angles[safe_mask, 0] = np.arctan2(matrix_transformed[safe_mask, 0, 2],
|
||
|
-matrix_transformed[safe_mask, 1, 2])
|
||
|
angles[safe_mask, 2] = np.arctan2(matrix_transformed[safe_mask, 2, 0],
|
||
|
matrix_transformed[safe_mask, 2, 1])
|
||
|
|
||
|
if extrinsic:
|
||
|
# For extrinsic, set first angle to zero so that after reversal we
|
||
|
# ensure that third angle is zero
|
||
|
# 6a
|
||
|
angles[~safe_mask, 0] = 0
|
||
|
# 6b
|
||
|
angles[~safe1, 2] = np.arctan2(matrix_transformed[~safe1, 1, 0]
|
||
|
- matrix_transformed[~safe1, 0, 1],
|
||
|
matrix_transformed[~safe1, 0, 0]
|
||
|
+ matrix_transformed[~safe1, 1, 1])
|
||
|
# 6c
|
||
|
angles[~safe2, 2] = -np.arctan2(matrix_transformed[~safe2, 1, 0]
|
||
|
+ matrix_transformed[~safe2, 0, 1],
|
||
|
matrix_transformed[~safe2, 0, 0]
|
||
|
- matrix_transformed[~safe2, 1, 1])
|
||
|
else:
|
||
|
# For instrinsic, set third angle to zero
|
||
|
# 6a
|
||
|
angles[~safe_mask, 2] = 0
|
||
|
# 6b
|
||
|
angles[~safe1, 0] = np.arctan2(matrix_transformed[~safe1, 1, 0]
|
||
|
- matrix_transformed[~safe1, 0, 1],
|
||
|
matrix_transformed[~safe1, 0, 0]
|
||
|
+ matrix_transformed[~safe1, 1, 1])
|
||
|
# 6c
|
||
|
angles[~safe2, 0] = np.arctan2(matrix_transformed[~safe2, 1, 0]
|
||
|
+ matrix_transformed[~safe2, 0, 1],
|
||
|
matrix_transformed[~safe2, 0, 0]
|
||
|
- matrix_transformed[~safe2, 1, 1])
|
||
|
|
||
|
# Step 7
|
||
|
if seq[0] == seq[2]:
|
||
|
# lambda = 0, so we can only ensure angle2 -> [0, pi]
|
||
|
adjust_mask = np.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi)
|
||
|
else:
|
||
|
# lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2]
|
||
|
adjust_mask = np.logical_or(angles[:, 1] < -np.pi / 2,
|
||
|
angles[:, 1] > np.pi / 2)
|
||
|
|
||
|
# Dont adjust gimbal locked angle sequences
|
||
|
adjust_mask = np.logical_and(adjust_mask, safe_mask)
|
||
|
|
||
|
angles[adjust_mask, 0] += np.pi
|
||
|
angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1]
|
||
|
angles[adjust_mask, 2] -= np.pi
|
||
|
|
||
|
angles[angles < -np.pi] += 2 * np.pi
|
||
|
angles[angles > np.pi] -= 2 * np.pi
|
||
|
|
||
|
# Step 8
|
||
|
if not np.all(safe_mask):
|
||
|
warnings.warn("Gimbal lock detected. Setting third angle to zero since"
|
||
|
" it is not possible to uniquely determine all angles.")
|
||
|
|
||
|
# Reverse role of extrinsic and intrinsic rotations, but let third angle be
|
||
|
# zero for gimbal locked cases
|
||
|
if extrinsic:
|
||
|
angles = angles[:, ::-1]
|
||
|
return angles
|
||
|
|
||
|
|
||
|
def _make_elementary_quat(axis, angles):
|
||
|
quat = np.zeros((angles.shape[0], 4))
|
||
|
|
||
|
quat[:, 3] = np.cos(angles / 2)
|
||
|
quat[:, _AXIS_TO_IND[axis]] = np.sin(angles / 2)
|
||
|
return quat
|
||
|
|
||
|
|
||
|
def _compose_quat(p, q):
|
||
|
product = np.empty((max(p.shape[0], q.shape[0]), 4))
|
||
|
product[:, 3] = p[:, 3] * q[:, 3] - np.sum(p[:, :3] * q[:, :3], axis=1)
|
||
|
product[:, :3] = (p[:, None, 3] * q[:, :3] + q[:, None, 3] * p[:, :3] +
|
||
|
np.cross(p[:, :3], q[:, :3]))
|
||
|
return product
|
||
|
|
||
|
|
||
|
def _elementary_quat_compose(seq, angles, intrinsic=False):
|
||
|
result = _make_elementary_quat(seq[0], angles[:, 0])
|
||
|
|
||
|
for idx, axis in enumerate(seq[1:], start=1):
|
||
|
if intrinsic:
|
||
|
result = _compose_quat(
|
||
|
result,
|
||
|
_make_elementary_quat(axis, angles[:, idx]))
|
||
|
else:
|
||
|
result = _compose_quat(
|
||
|
_make_elementary_quat(axis, angles[:, idx]),
|
||
|
result)
|
||
|
return result
|
||
|
|
||
|
|
||
|
class Rotation(object):
|
||
|
"""Rotation in 3 dimensions.
|
||
|
|
||
|
This class provides an interface to initialize from and represent rotations
|
||
|
with:
|
||
|
|
||
|
- Quaternions
|
||
|
- Rotation Matrices
|
||
|
- Rotation Vectors
|
||
|
- Euler Angles
|
||
|
|
||
|
The following operations on rotations are supported:
|
||
|
|
||
|
- Application on vectors
|
||
|
- Rotation Composition
|
||
|
- Rotation Inversion
|
||
|
- Rotation Indexing
|
||
|
|
||
|
Indexing within a rotation is supported since multiple rotation transforms
|
||
|
can be stored within a single `Rotation` instance.
|
||
|
|
||
|
To create `Rotation` objects use ``from_...`` methods (see examples below).
|
||
|
``Rotation(...)`` is not supposed to be instantiated directly.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
__len__
|
||
|
from_quat
|
||
|
from_matrix
|
||
|
from_rotvec
|
||
|
from_euler
|
||
|
as_quat
|
||
|
as_matrix
|
||
|
as_rotvec
|
||
|
as_euler
|
||
|
apply
|
||
|
__mul__
|
||
|
inv
|
||
|
magnitude
|
||
|
mean
|
||
|
reduce
|
||
|
create_group
|
||
|
__getitem__
|
||
|
identity
|
||
|
random
|
||
|
align_vectors
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Slerp
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded: 1.2.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
A `Rotation` instance can be initialized in any of the above formats and
|
||
|
converted to any of the others. The underlying object is independent of the
|
||
|
representation used for initialization.
|
||
|
|
||
|
Consider a counter-clockwise rotation of 90 degrees about the z-axis. This
|
||
|
corresponds to the following quaternion (in scalar-last format):
|
||
|
|
||
|
>>> r = R.from_quat([0, 0, np.sin(np.pi/4), np.cos(np.pi/4)])
|
||
|
|
||
|
The rotation can be expressed in any of the other formats:
|
||
|
|
||
|
>>> r.as_matrix()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
>>> r.as_euler('zyx', degrees=True)
|
||
|
array([90., 0., 0.])
|
||
|
|
||
|
The same rotation can be initialized using a rotation matrix:
|
||
|
|
||
|
>>> r = R.from_matrix([[0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1]])
|
||
|
|
||
|
Representation in other formats:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
>>> r.as_euler('zyx', degrees=True)
|
||
|
array([90., 0., 0.])
|
||
|
|
||
|
The rotation vector corresponding to this rotation is given by:
|
||
|
|
||
|
>>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1]))
|
||
|
|
||
|
Representation in other formats:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
>>> r.as_matrix()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.as_euler('zyx', degrees=True)
|
||
|
array([90., 0., 0.])
|
||
|
|
||
|
The ``from_euler`` method is quite flexible in the range of input formats
|
||
|
it supports. Here we initialize a single rotation about a single axis:
|
||
|
|
||
|
>>> r = R.from_euler('z', 90, degrees=True)
|
||
|
|
||
|
Again, the object is representation independent and can be converted to any
|
||
|
other format:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
>>> r.as_matrix()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
|
||
|
It is also possible to initialize multiple rotations in a single instance
|
||
|
using any of the `from_...` functions. Here we initialize a stack of 3
|
||
|
rotations using the ``from_euler`` method:
|
||
|
|
||
|
>>> r = R.from_euler('zyx', [
|
||
|
... [90, 0, 0],
|
||
|
... [0, 45, 0],
|
||
|
... [45, 60, 30]], degrees=True)
|
||
|
|
||
|
The other representations also now return a stack of 3 rotations. For
|
||
|
example:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([[0. , 0. , 0.70710678, 0.70710678],
|
||
|
[0. , 0.38268343, 0. , 0.92387953],
|
||
|
[0.39190384, 0.36042341, 0.43967974, 0.72331741]])
|
||
|
|
||
|
Applying the above rotations onto a vector:
|
||
|
|
||
|
>>> v = [1, 2, 3]
|
||
|
>>> r.apply(v)
|
||
|
array([[-2. , 1. , 3. ],
|
||
|
[ 2.82842712, 2. , 1.41421356],
|
||
|
[ 2.24452282, 0.78093109, 2.89002836]])
|
||
|
|
||
|
A `Rotation` instance can be indexed and sliced as if it were a single
|
||
|
1D array or list:
|
||
|
|
||
|
>>> r.as_quat()
|
||
|
array([[0. , 0. , 0.70710678, 0.70710678],
|
||
|
[0. , 0.38268343, 0. , 0.92387953],
|
||
|
[0.39190384, 0.36042341, 0.43967974, 0.72331741]])
|
||
|
>>> p = r[0]
|
||
|
>>> p.as_matrix()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> q = r[1:3]
|
||
|
>>> q.as_quat()
|
||
|
array([[0. , 0.38268343, 0. , 0.92387953],
|
||
|
[0.39190384, 0.36042341, 0.43967974, 0.72331741]])
|
||
|
|
||
|
Multiple rotations can be composed using the ``*`` operator:
|
||
|
|
||
|
>>> r1 = R.from_euler('z', 90, degrees=True)
|
||
|
>>> r2 = R.from_rotvec([np.pi/4, 0, 0])
|
||
|
>>> v = [1, 2, 3]
|
||
|
>>> r2.apply(r1.apply(v))
|
||
|
array([-2. , -1.41421356, 2.82842712])
|
||
|
>>> r3 = r2 * r1 # Note the order
|
||
|
>>> r3.apply(v)
|
||
|
array([-2. , -1.41421356, 2.82842712])
|
||
|
|
||
|
Finally, it is also possible to invert rotations:
|
||
|
|
||
|
>>> r1 = R.from_euler('z', [90, 45], degrees=True)
|
||
|
>>> r2 = r1.inv()
|
||
|
>>> r2.as_euler('zyx', degrees=True)
|
||
|
array([[-90., 0., 0.],
|
||
|
[-45., 0., 0.]])
|
||
|
|
||
|
These examples serve as an overview into the `Rotation` class and highlight
|
||
|
major functionalities. For more thorough examples of the range of input and
|
||
|
output formats supported, consult the individual method's examples.
|
||
|
|
||
|
"""
|
||
|
def __init__(self, quat, normalize=True, copy=True):
|
||
|
self._single = False
|
||
|
quat = np.asarray(quat, dtype=float)
|
||
|
|
||
|
if quat.ndim not in [1, 2] or quat.shape[-1] != 4:
|
||
|
raise ValueError("Expected `quat` to have shape (4,) or (N x 4), "
|
||
|
"got {}.".format(quat.shape))
|
||
|
|
||
|
# If a single quaternion is given, convert it to a 2D 1 x 4 matrix but
|
||
|
# set self._single to True so that we can return appropriate objects
|
||
|
# in the `to_...` methods
|
||
|
if quat.shape == (4,):
|
||
|
quat = quat[None, :]
|
||
|
self._single = True
|
||
|
|
||
|
if normalize:
|
||
|
self._quat = quat.copy()
|
||
|
norms = scipy.linalg.norm(quat, axis=1)
|
||
|
|
||
|
zero_norms = norms == 0
|
||
|
if zero_norms.any():
|
||
|
raise ValueError("Found zero norm quaternions in `quat`.")
|
||
|
|
||
|
# Ensure norm is broadcasted along each column.
|
||
|
self._quat[~zero_norms] /= norms[~zero_norms][:, None]
|
||
|
else:
|
||
|
self._quat = quat.copy() if copy else quat
|
||
|
|
||
|
def __len__(self):
|
||
|
"""Number of rotations contained in this object.
|
||
|
|
||
|
Multiple rotations can be stored in a single instance.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
length : int
|
||
|
Number of rotations stored in object.
|
||
|
|
||
|
"""
|
||
|
return self._quat.shape[0]
|
||
|
|
||
|
@classmethod
|
||
|
def from_quat(cls, quat, normalized=None):
|
||
|
"""Initialize from quaternions.
|
||
|
|
||
|
3D rotations can be represented using unit-norm quaternions [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
quat : array_like, shape (N, 4) or (4,)
|
||
|
Each row is a (possibly non-unit norm) quaternion in scalar-last
|
||
|
(x, y, z, w) format. Each quaternion will be normalized to unit
|
||
|
norm.
|
||
|
normalized
|
||
|
Deprecated argument. Has no effect, input `quat` is always
|
||
|
normalized.
|
||
|
|
||
|
.. deprecated:: 1.4.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the rotations represented by input quaternions.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Initialize a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([1, 0, 0, 0])
|
||
|
>>> r.as_quat()
|
||
|
array([1., 0., 0., 0.])
|
||
|
>>> r.as_quat().shape
|
||
|
(4,)
|
||
|
|
||
|
Initialize multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_quat([
|
||
|
... [1, 0, 0, 0],
|
||
|
... [0, 0, 0, 1]
|
||
|
... ])
|
||
|
>>> r.as_quat()
|
||
|
array([[1., 0., 0., 0.],
|
||
|
[0., 0., 0., 1.]])
|
||
|
>>> r.as_quat().shape
|
||
|
(2, 4)
|
||
|
|
||
|
It is also possible to have a stack of a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([[0, 0, 0, 1]])
|
||
|
>>> r.as_quat()
|
||
|
array([[0., 0., 0., 1.]])
|
||
|
>>> r.as_quat().shape
|
||
|
(1, 4)
|
||
|
|
||
|
Quaternions are normalized before initialization.
|
||
|
|
||
|
>>> r = R.from_quat([0, 0, 1, 1])
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
"""
|
||
|
if normalized is not None:
|
||
|
warnings.warn("`normalized` is deprecated in scipy 1.4.0 and "
|
||
|
"will be removed in scipy 1.6.0. The input `quat` "
|
||
|
"is always normalized.", DeprecationWarning)
|
||
|
|
||
|
return cls(quat, normalize=True)
|
||
|
|
||
|
@classmethod
|
||
|
def from_matrix(cls, matrix):
|
||
|
"""Initialize from rotation matrix.
|
||
|
|
||
|
Rotations in 3 dimensions can be represented with 3 x 3 proper
|
||
|
orthogonal matrices [1]_. If the input is not proper orthogonal,
|
||
|
an approximation is created using the method described in [2]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
matrix : array_like, shape (N, 3, 3) or (3, 3)
|
||
|
A single matrix or a stack of matrices, where ``matrix[i]`` is
|
||
|
the i-th matrix.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the rotations represented by the rotation
|
||
|
matrices.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions
|
||
|
.. [2] F. Landis Markley, "Unit Quaternion from Rotation Matrix",
|
||
|
Journal of guidance, control, and dynamics vol. 31.2, pp.
|
||
|
440-442, 2008.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Initialize a single rotation:
|
||
|
|
||
|
>>> r = R.from_matrix([
|
||
|
... [0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1]])
|
||
|
>>> r.as_matrix().shape
|
||
|
(3, 3)
|
||
|
|
||
|
Initialize multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_matrix([
|
||
|
... [
|
||
|
... [0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1],
|
||
|
... ],
|
||
|
... [
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, -1],
|
||
|
... [0, 1, 0],
|
||
|
... ]])
|
||
|
>>> r.as_matrix().shape
|
||
|
(2, 3, 3)
|
||
|
|
||
|
If input matrices are not special orthogonal (orthogonal with
|
||
|
determinant equal to +1), then a special orthogonal estimate is stored:
|
||
|
|
||
|
>>> a = np.array([
|
||
|
... [0, -0.5, 0],
|
||
|
... [0.5, 0, 0],
|
||
|
... [0, 0, 0.5]])
|
||
|
>>> np.linalg.det(a)
|
||
|
0.12500000000000003
|
||
|
>>> r = R.from_matrix(a)
|
||
|
>>> matrix = r.as_matrix()
|
||
|
>>> matrix
|
||
|
array([[-0.38461538, -0.92307692, 0. ],
|
||
|
[ 0.92307692, -0.38461538, 0. ],
|
||
|
[ 0. , 0. , 1. ]])
|
||
|
>>> np.linalg.det(matrix)
|
||
|
1.0000000000000002
|
||
|
|
||
|
It is also possible to have a stack containing a single rotation:
|
||
|
|
||
|
>>> r = R.from_matrix([[
|
||
|
... [0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1]]])
|
||
|
>>> r.as_matrix()
|
||
|
array([[[ 0., -1., 0.],
|
||
|
[ 1., 0., 0.],
|
||
|
[ 0., 0., 1.]]])
|
||
|
>>> r.as_matrix().shape
|
||
|
(1, 3, 3)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function was called from_dcm before.
|
||
|
|
||
|
.. versionadded:: 1.4.0
|
||
|
"""
|
||
|
is_single = False
|
||
|
matrix = np.asarray(matrix, dtype=float)
|
||
|
|
||
|
if matrix.ndim not in [2, 3] or matrix.shape[-2:] != (3, 3):
|
||
|
raise ValueError("Expected `matrix` to have shape (3, 3) or "
|
||
|
"(N, 3, 3), got {}".format(matrix.shape))
|
||
|
|
||
|
# If a single matrix is given, convert it to 3D 1 x 3 x 3 matrix but
|
||
|
# set self._single to True so that we can return appropriate objects in
|
||
|
# the `to_...` methods
|
||
|
if matrix.shape == (3, 3):
|
||
|
matrix = matrix.reshape((1, 3, 3))
|
||
|
is_single = True
|
||
|
|
||
|
num_rotations = matrix.shape[0]
|
||
|
|
||
|
decision_matrix = np.empty((num_rotations, 4))
|
||
|
decision_matrix[:, :3] = matrix.diagonal(axis1=1, axis2=2)
|
||
|
decision_matrix[:, -1] = decision_matrix[:, :3].sum(axis=1)
|
||
|
choices = decision_matrix.argmax(axis=1)
|
||
|
|
||
|
quat = np.empty((num_rotations, 4))
|
||
|
|
||
|
ind = np.nonzero(choices != 3)[0]
|
||
|
i = choices[ind]
|
||
|
j = (i + 1) % 3
|
||
|
k = (j + 1) % 3
|
||
|
|
||
|
quat[ind, i] = 1 - decision_matrix[ind, -1] + 2 * matrix[ind, i, i]
|
||
|
quat[ind, j] = matrix[ind, j, i] + matrix[ind, i, j]
|
||
|
quat[ind, k] = matrix[ind, k, i] + matrix[ind, i, k]
|
||
|
quat[ind, 3] = matrix[ind, k, j] - matrix[ind, j, k]
|
||
|
|
||
|
ind = np.nonzero(choices == 3)[0]
|
||
|
quat[ind, 0] = matrix[ind, 2, 1] - matrix[ind, 1, 2]
|
||
|
quat[ind, 1] = matrix[ind, 0, 2] - matrix[ind, 2, 0]
|
||
|
quat[ind, 2] = matrix[ind, 1, 0] - matrix[ind, 0, 1]
|
||
|
quat[ind, 3] = 1 + decision_matrix[ind, -1]
|
||
|
|
||
|
quat /= np.linalg.norm(quat, axis=1)[:, None]
|
||
|
|
||
|
if is_single:
|
||
|
return cls(quat[0], normalize=False, copy=False)
|
||
|
else:
|
||
|
return cls(quat, normalize=False, copy=False)
|
||
|
|
||
|
@classmethod
|
||
|
@np.deprecate(message="from_dcm is renamed to from_matrix in scipy 1.4.0 "
|
||
|
"and will be removed in scipy 1.6.0")
|
||
|
def from_dcm(cls, dcm):
|
||
|
return cls.from_matrix(dcm)
|
||
|
|
||
|
@classmethod
|
||
|
def from_rotvec(cls, rotvec):
|
||
|
"""Initialize from rotation vectors.
|
||
|
|
||
|
A rotation vector is a 3 dimensional vector which is co-directional to
|
||
|
the axis of rotation and whose norm gives the angle of rotation (in
|
||
|
radians) [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
rotvec : array_like, shape (N, 3) or (3,)
|
||
|
A single vector or a stack of vectors, where `rot_vec[i]` gives
|
||
|
the ith rotation vector.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the rotations represented by input rotation
|
||
|
vectors.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Initialize a single rotation:
|
||
|
|
||
|
>>> r = R.from_rotvec(np.pi/2 * np.array([0, 0, 1]))
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(3,)
|
||
|
|
||
|
Initialize multiple rotations in one object:
|
||
|
|
||
|
>>> r = R.from_rotvec([
|
||
|
... [0, 0, np.pi/2],
|
||
|
... [np.pi/2, 0, 0]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([[0. , 0. , 1.57079633],
|
||
|
[1.57079633, 0. , 0. ]])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(2, 3)
|
||
|
|
||
|
It is also possible to have a stack of a single rotaton:
|
||
|
|
||
|
>>> r = R.from_rotvec([[0, 0, np.pi/2]])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(1, 3)
|
||
|
|
||
|
"""
|
||
|
is_single = False
|
||
|
rotvec = np.asarray(rotvec, dtype=float)
|
||
|
|
||
|
if rotvec.ndim not in [1, 2] or rotvec.shape[-1] != 3:
|
||
|
raise ValueError("Expected `rot_vec` to have shape (3,) "
|
||
|
"or (N, 3), got {}".format(rotvec.shape))
|
||
|
|
||
|
# If a single vector is given, convert it to a 2D 1 x 3 matrix but
|
||
|
# set self._single to True so that we can return appropriate objects
|
||
|
# in the `as_...` methods
|
||
|
if rotvec.shape == (3,):
|
||
|
rotvec = rotvec[None, :]
|
||
|
is_single = True
|
||
|
|
||
|
num_rotations = rotvec.shape[0]
|
||
|
|
||
|
norms = np.linalg.norm(rotvec, axis=1)
|
||
|
small_angle = (norms <= 1e-3)
|
||
|
large_angle = ~small_angle
|
||
|
|
||
|
scale = np.empty(num_rotations)
|
||
|
scale[small_angle] = (0.5 - norms[small_angle] ** 2 / 48 +
|
||
|
norms[small_angle] ** 4 / 3840)
|
||
|
scale[large_angle] = (np.sin(norms[large_angle] / 2) /
|
||
|
norms[large_angle])
|
||
|
|
||
|
quat = np.empty((num_rotations, 4))
|
||
|
quat[:, :3] = scale[:, None] * rotvec
|
||
|
quat[:, 3] = np.cos(norms / 2)
|
||
|
|
||
|
if is_single:
|
||
|
return cls(quat[0], normalize=False, copy=False)
|
||
|
else:
|
||
|
return cls(quat, normalize=False, copy=False)
|
||
|
|
||
|
@classmethod
|
||
|
def from_euler(cls, seq, angles, degrees=False):
|
||
|
"""Initialize from Euler angles.
|
||
|
|
||
|
Rotations in 3-D can be represented by a sequence of 3
|
||
|
rotations around a sequence of axes. In theory, any three axes spanning
|
||
|
the 3-D Euclidean space are enough. In practice, the axes of rotation are
|
||
|
chosen to be the basis vectors.
|
||
|
|
||
|
The three rotations can either be in a global frame of reference
|
||
|
(extrinsic) or in a body centred frame of reference (intrinsic), which
|
||
|
is attached to, and moves with, the object under rotation [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
seq : string
|
||
|
Specifies sequence of axes for rotations. Up to 3 characters
|
||
|
belonging to the set {'X', 'Y', 'Z'} for intrinsic rotations, or
|
||
|
{'x', 'y', 'z'} for extrinsic rotations. Extrinsic and intrinsic
|
||
|
rotations cannot be mixed in one function call.
|
||
|
angles : float or array_like, shape (N,) or (N, [1 or 2 or 3])
|
||
|
Euler angles specified in radians (`degrees` is False) or degrees
|
||
|
(`degrees` is True).
|
||
|
For a single character `seq`, `angles` can be:
|
||
|
|
||
|
- a single value
|
||
|
- array_like with shape (N,), where each `angle[i]`
|
||
|
corresponds to a single rotation
|
||
|
- array_like with shape (N, 1), where each `angle[i, 0]`
|
||
|
corresponds to a single rotation
|
||
|
|
||
|
For 2- and 3-character wide `seq`, `angles` can be:
|
||
|
|
||
|
- array_like with shape (W,) where `W` is the width of
|
||
|
`seq`, which corresponds to a single rotation with `W` axes
|
||
|
- array_like with shape (N, W) where each `angle[i]`
|
||
|
corresponds to a sequence of Euler angles describing a single
|
||
|
rotation
|
||
|
|
||
|
degrees : bool, optional
|
||
|
If True, then the given angles are assumed to be in degrees.
|
||
|
Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the rotation represented by the sequence of
|
||
|
rotations around given axes with given angles.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Initialize a single rotation along a single axis:
|
||
|
|
||
|
>>> r = R.from_euler('x', 90, degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(4,)
|
||
|
|
||
|
Initialize a single rotation with a given axis sequence:
|
||
|
|
||
|
>>> r = R.from_euler('zyx', [90, 45, 30], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(4,)
|
||
|
|
||
|
Initialize a stack with a single rotation around a single axis:
|
||
|
|
||
|
>>> r = R.from_euler('x', [90], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(1, 4)
|
||
|
|
||
|
Initialize a stack with a single rotation with an axis sequence:
|
||
|
|
||
|
>>> r = R.from_euler('zyx', [[90, 45, 30]], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(1, 4)
|
||
|
|
||
|
Initialize multiple elementary rotations in one object:
|
||
|
|
||
|
>>> r = R.from_euler('x', [90, 45, 30], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(3, 4)
|
||
|
|
||
|
Initialize multiple rotations in one object:
|
||
|
|
||
|
>>> r = R.from_euler('zyx', [[90, 45, 30], [35, 45, 90]], degrees=True)
|
||
|
>>> r.as_quat().shape
|
||
|
(2, 4)
|
||
|
|
||
|
"""
|
||
|
num_axes = len(seq)
|
||
|
if num_axes < 1 or num_axes > 3:
|
||
|
raise ValueError("Expected axis specification to be a non-empty "
|
||
|
"string of upto 3 characters, got {}".format(seq))
|
||
|
|
||
|
intrinsic = (re.match(r'^[XYZ]{1,3}$', seq) is not None)
|
||
|
extrinsic = (re.match(r'^[xyz]{1,3}$', seq) is not None)
|
||
|
if not (intrinsic or extrinsic):
|
||
|
raise ValueError("Expected axes from `seq` to be from ['x', 'y', "
|
||
|
"'z'] or ['X', 'Y', 'Z'], got {}".format(seq))
|
||
|
|
||
|
if any(seq[i] == seq[i+1] for i in range(num_axes - 1)):
|
||
|
raise ValueError("Expected consecutive axes to be different, "
|
||
|
"got {}".format(seq))
|
||
|
|
||
|
seq = seq.lower()
|
||
|
|
||
|
angles = np.asarray(angles, dtype=float)
|
||
|
if degrees:
|
||
|
angles = np.deg2rad(angles)
|
||
|
|
||
|
is_single = False
|
||
|
# Prepare angles to have shape (num_rot, num_axes)
|
||
|
if num_axes == 1:
|
||
|
if angles.ndim == 0:
|
||
|
# (1, 1)
|
||
|
angles = angles.reshape((1, 1))
|
||
|
is_single = True
|
||
|
elif angles.ndim == 1:
|
||
|
# (N, 1)
|
||
|
angles = angles[:, None]
|
||
|
elif angles.ndim == 2 and angles.shape[-1] != 1:
|
||
|
raise ValueError("Expected `angles` parameter to have shape "
|
||
|
"(N, 1), got {}.".format(angles.shape))
|
||
|
elif angles.ndim > 2:
|
||
|
raise ValueError("Expected float, 1D array, or 2D array for "
|
||
|
"parameter `angles` corresponding to `seq`, "
|
||
|
"got shape {}.".format(angles.shape))
|
||
|
else: # 2 or 3 axes
|
||
|
if angles.ndim not in [1, 2] or angles.shape[-1] != num_axes:
|
||
|
raise ValueError("Expected `angles` to be at most "
|
||
|
"2-dimensional with width equal to number "
|
||
|
"of axes specified, got {} for shape".format(
|
||
|
angles.shape))
|
||
|
|
||
|
if angles.ndim == 1:
|
||
|
# (1, num_axes)
|
||
|
angles = angles[None, :]
|
||
|
is_single = True
|
||
|
|
||
|
# By now angles should have shape (num_rot, num_axes)
|
||
|
# sanity check
|
||
|
if angles.ndim != 2 or angles.shape[-1] != num_axes:
|
||
|
raise ValueError("Expected angles to have shape (num_rotations, "
|
||
|
"num_axes), got {}.".format(angles.shape))
|
||
|
|
||
|
quat = _elementary_quat_compose(seq, angles, intrinsic)
|
||
|
|
||
|
if is_single:
|
||
|
return cls(quat[0], normalize=False, copy=False)
|
||
|
else:
|
||
|
return cls(quat, normalize=False, copy=False)
|
||
|
|
||
|
def as_quat(self):
|
||
|
"""Represent as quaternions.
|
||
|
|
||
|
Rotations in 3 dimensions can be represented using unit norm
|
||
|
quaternions [1]_. The mapping from quaternions to rotations is
|
||
|
two-to-one, i.e. quaternions ``q`` and ``-q``, where ``-q`` simply
|
||
|
reverses the sign of each component, represent the same spatial
|
||
|
rotation.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
quat : `numpy.ndarray`, shape (4,) or (N, 4)
|
||
|
Shape depends on shape of inputs used for initialization.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Represent a single rotation:
|
||
|
|
||
|
>>> r = R.from_matrix([[0, -1, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 0, 1]])
|
||
|
>>> r.as_quat()
|
||
|
array([0. , 0. , 0.70710678, 0.70710678])
|
||
|
>>> r.as_quat().shape
|
||
|
(4,)
|
||
|
|
||
|
Represent a stack with a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([[0, 0, 0, 1]])
|
||
|
>>> r.as_quat().shape
|
||
|
(1, 4)
|
||
|
|
||
|
Represent multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_rotvec([[np.pi, 0, 0], [0, 0, np.pi/2]])
|
||
|
>>> r.as_quat().shape
|
||
|
(2, 4)
|
||
|
|
||
|
"""
|
||
|
if self._single:
|
||
|
return self._quat[0].copy()
|
||
|
else:
|
||
|
return self._quat.copy()
|
||
|
|
||
|
def as_matrix(self):
|
||
|
"""Represent as rotation matrix.
|
||
|
|
||
|
3D rotations can be represented using rotation matrices, which
|
||
|
are 3 x 3 real orthogonal matrices with determinant equal to +1 [1]_.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
matrix : ndarray, shape (3, 3) or (N, 3, 3)
|
||
|
Shape depends on shape of inputs used for initialization.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Represent a single rotation:
|
||
|
|
||
|
>>> r = R.from_rotvec([0, 0, np.pi/2])
|
||
|
>>> r.as_matrix()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.as_matrix().shape
|
||
|
(3, 3)
|
||
|
|
||
|
Represent a stack with a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([[1, 1, 0, 0]])
|
||
|
>>> r.as_matrix()
|
||
|
array([[[ 0., 1., 0.],
|
||
|
[ 1., 0., 0.],
|
||
|
[ 0., 0., -1.]]])
|
||
|
>>> r.as_matrix().shape
|
||
|
(1, 3, 3)
|
||
|
|
||
|
Represent multiple rotations:
|
||
|
|
||
|
>>> r = R.from_rotvec([[np.pi/2, 0, 0], [0, 0, np.pi/2]])
|
||
|
>>> r.as_matrix()
|
||
|
array([[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00],
|
||
|
[ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]],
|
||
|
[[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]])
|
||
|
>>> r.as_matrix().shape
|
||
|
(2, 3, 3)
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function was called as_dcm before.
|
||
|
|
||
|
.. versionadded:: 1.4.0
|
||
|
"""
|
||
|
x = self._quat[:, 0]
|
||
|
y = self._quat[:, 1]
|
||
|
z = self._quat[:, 2]
|
||
|
w = self._quat[:, 3]
|
||
|
|
||
|
x2 = x * x
|
||
|
y2 = y * y
|
||
|
z2 = z * z
|
||
|
w2 = w * w
|
||
|
|
||
|
xy = x * y
|
||
|
zw = z * w
|
||
|
xz = x * z
|
||
|
yw = y * w
|
||
|
yz = y * z
|
||
|
xw = x * w
|
||
|
|
||
|
num_rotations = len(self)
|
||
|
matrix = np.empty((num_rotations, 3, 3))
|
||
|
|
||
|
matrix[:, 0, 0] = x2 - y2 - z2 + w2
|
||
|
matrix[:, 1, 0] = 2 * (xy + zw)
|
||
|
matrix[:, 2, 0] = 2 * (xz - yw)
|
||
|
|
||
|
matrix[:, 0, 1] = 2 * (xy - zw)
|
||
|
matrix[:, 1, 1] = - x2 + y2 - z2 + w2
|
||
|
matrix[:, 2, 1] = 2 * (yz + xw)
|
||
|
|
||
|
matrix[:, 0, 2] = 2 * (xz + yw)
|
||
|
matrix[:, 1, 2] = 2 * (yz - xw)
|
||
|
matrix[:, 2, 2] = - x2 - y2 + z2 + w2
|
||
|
|
||
|
if self._single:
|
||
|
return matrix[0]
|
||
|
else:
|
||
|
return matrix
|
||
|
|
||
|
@np.deprecate(message="as_dcm is renamed to as_matrix in scipy 1.4.0 "
|
||
|
"and will be removed in scipy 1.6.0")
|
||
|
def as_dcm(self):
|
||
|
return self.as_matrix()
|
||
|
|
||
|
def as_rotvec(self):
|
||
|
"""Represent as rotation vectors.
|
||
|
|
||
|
A rotation vector is a 3 dimensional vector which is co-directional to
|
||
|
the axis of rotation and whose norm gives the angle of rotation (in
|
||
|
radians) [1]_.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotvec : ndarray, shape (3,) or (N, 3)
|
||
|
Shape depends on shape of inputs used for initialization.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Rotation_vector
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Represent a single rotation:
|
||
|
|
||
|
>>> r = R.from_euler('z', 90, degrees=True)
|
||
|
>>> r.as_rotvec()
|
||
|
array([0. , 0. , 1.57079633])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(3,)
|
||
|
|
||
|
Represent a stack with a single rotation:
|
||
|
|
||
|
>>> r = R.from_quat([[0, 0, 1, 1]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([[0. , 0. , 1.57079633]])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(1, 3)
|
||
|
|
||
|
Represent multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_quat([[0, 0, 1, 1], [1, 1, 0, 1]])
|
||
|
>>> r.as_rotvec()
|
||
|
array([[0. , 0. , 1.57079633],
|
||
|
[1.35102172, 1.35102172, 0. ]])
|
||
|
>>> r.as_rotvec().shape
|
||
|
(2, 3)
|
||
|
|
||
|
"""
|
||
|
quat = self._quat.copy()
|
||
|
# w > 0 to ensure 0 <= angle <= pi
|
||
|
quat[quat[:, 3] < 0] *= -1
|
||
|
|
||
|
angle = 2 * np.arctan2(np.linalg.norm(quat[:, :3], axis=1), quat[:, 3])
|
||
|
|
||
|
small_angle = (angle <= 1e-3)
|
||
|
large_angle = ~small_angle
|
||
|
|
||
|
num_rotations = len(self)
|
||
|
scale = np.empty(num_rotations)
|
||
|
scale[small_angle] = (2 + angle[small_angle] ** 2 / 12 +
|
||
|
7 * angle[small_angle] ** 4 / 2880)
|
||
|
scale[large_angle] = (angle[large_angle] /
|
||
|
np.sin(angle[large_angle] / 2))
|
||
|
|
||
|
rotvec = scale[:, None] * quat[:, :3]
|
||
|
|
||
|
if self._single:
|
||
|
return rotvec[0]
|
||
|
else:
|
||
|
return rotvec
|
||
|
|
||
|
def as_euler(self, seq, degrees=False):
|
||
|
"""Represent as Euler angles.
|
||
|
|
||
|
Any orientation can be expressed as a composition of 3 elementary
|
||
|
rotations. Once the axis sequence has been chosen, Euler angles define
|
||
|
the angle of rotation around each respective axis [1]_.
|
||
|
|
||
|
The algorithm from [2]_ has been used to calculate Euler angles for the
|
||
|
rotation about a given sequence of axes.
|
||
|
|
||
|
Euler angles suffer from the problem of gimbal lock [3]_, where the
|
||
|
representation loses a degree of freedom and it is not possible to
|
||
|
determine the first and third angles uniquely. In this case,
|
||
|
a warning is raised, and the third angle is set to zero. Note however
|
||
|
that the returned angles still represent the correct rotation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
seq : string, length 3
|
||
|
3 characters belonging to the set {'X', 'Y', 'Z'} for intrinsic
|
||
|
rotations, or {'x', 'y', 'z'} for extrinsic rotations [1]_.
|
||
|
Adjacent axes cannot be the same.
|
||
|
Extrinsic and intrinsic rotations cannot be mixed in one function
|
||
|
call.
|
||
|
degrees : boolean, optional
|
||
|
Returned angles are in degrees if this flag is True, else they are
|
||
|
in radians. Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
angles : ndarray, shape (3,) or (N, 3)
|
||
|
Shape depends on shape of inputs used to initialize object.
|
||
|
The returned angles are in the range:
|
||
|
|
||
|
- First angle belongs to [-180, 180] degrees (both inclusive)
|
||
|
- Third angle belongs to [-180, 180] degrees (both inclusive)
|
||
|
- Second angle belongs to:
|
||
|
|
||
|
- [-90, 90] degrees if all axes are different (like xyz)
|
||
|
- [0, 180] degrees if first and third axes are the same
|
||
|
(like zxz)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Euler_angles#Definition_by_intrinsic_rotations
|
||
|
.. [2] Malcolm D. Shuster, F. Landis Markley, "General formula for
|
||
|
extraction the Euler angles", Journal of guidance, control, and
|
||
|
dynamics, vol. 29.1, pp. 215-221. 2006
|
||
|
.. [3] https://en.wikipedia.org/wiki/Gimbal_lock#In_applied_mathematics
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Represent a single rotation:
|
||
|
|
||
|
>>> r = R.from_rotvec([0, 0, np.pi/2])
|
||
|
>>> r.as_euler('zxy', degrees=True)
|
||
|
array([90., 0., 0.])
|
||
|
>>> r.as_euler('zxy', degrees=True).shape
|
||
|
(3,)
|
||
|
|
||
|
Represent a stack of single rotation:
|
||
|
|
||
|
>>> r = R.from_rotvec([[0, 0, np.pi/2]])
|
||
|
>>> r.as_euler('zxy', degrees=True)
|
||
|
array([[90., 0., 0.]])
|
||
|
>>> r.as_euler('zxy', degrees=True).shape
|
||
|
(1, 3)
|
||
|
|
||
|
Represent multiple rotations in a single object:
|
||
|
|
||
|
>>> r = R.from_rotvec([
|
||
|
... [0, 0, np.pi/2],
|
||
|
... [0, -np.pi/3, 0],
|
||
|
... [np.pi/4, 0, 0]])
|
||
|
>>> r.as_euler('zxy', degrees=True)
|
||
|
array([[ 90., 0., 0.],
|
||
|
[ 0., 0., -60.],
|
||
|
[ 0., 45., 0.]])
|
||
|
>>> r.as_euler('zxy', degrees=True).shape
|
||
|
(3, 3)
|
||
|
|
||
|
"""
|
||
|
if len(seq) != 3:
|
||
|
raise ValueError("Expected 3 axes, got {}.".format(seq))
|
||
|
|
||
|
intrinsic = (re.match(r'^[XYZ]{1,3}$', seq) is not None)
|
||
|
extrinsic = (re.match(r'^[xyz]{1,3}$', seq) is not None)
|
||
|
if not (intrinsic or extrinsic):
|
||
|
raise ValueError("Expected axes from `seq` to be from "
|
||
|
"['x', 'y', 'z'] or ['X', 'Y', 'Z'], "
|
||
|
"got {}".format(seq))
|
||
|
|
||
|
if any(seq[i] == seq[i+1] for i in range(2)):
|
||
|
raise ValueError("Expected consecutive axes to be different, "
|
||
|
"got {}".format(seq))
|
||
|
|
||
|
seq = seq.lower()
|
||
|
|
||
|
angles = _compute_euler_from_matrix(self.as_matrix(), seq, extrinsic)
|
||
|
if degrees:
|
||
|
angles = np.rad2deg(angles)
|
||
|
|
||
|
return angles[0] if self._single else angles
|
||
|
|
||
|
def apply(self, vectors, inverse=False):
|
||
|
"""Apply this rotation to a set of vectors.
|
||
|
|
||
|
If the original frame rotates to the final frame by this rotation, then
|
||
|
its application to a vector can be seen in two ways:
|
||
|
|
||
|
- As a projection of vector components expressed in the final frame
|
||
|
to the original frame.
|
||
|
- As the physical rotation of a vector being glued to the original
|
||
|
frame as it rotates. In this case the vector components are
|
||
|
expressed in the original frame before and after the rotation.
|
||
|
|
||
|
In terms of rotation matricies, this application is the same as
|
||
|
``self.as_matrix().dot(vectors)``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
vectors : array_like, shape (3,) or (N, 3)
|
||
|
Each `vectors[i]` represents a vector in 3D space. A single vector
|
||
|
can either be specified with shape `(3, )` or `(1, 3)`. The number
|
||
|
of rotations and number of vectors given must follow standard numpy
|
||
|
broadcasting rules: either one of them equals unity or they both
|
||
|
equal each other.
|
||
|
inverse : boolean, optional
|
||
|
If True then the inverse of the rotation(s) is applied to the input
|
||
|
vectors. Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotated_vectors : ndarray, shape (3,) or (N, 3)
|
||
|
Result of applying rotation on input vectors.
|
||
|
Shape depends on the following cases:
|
||
|
|
||
|
- If object contains a single rotation (as opposed to a stack
|
||
|
with a single rotation) and a single vector is specified with
|
||
|
shape ``(3,)``, then `rotated_vectors` has shape ``(3,)``.
|
||
|
- In all other cases, `rotated_vectors` has shape ``(N, 3)``,
|
||
|
where ``N`` is either the number of rotations or vectors.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Single rotation applied on a single vector:
|
||
|
|
||
|
>>> vector = np.array([1, 0, 0])
|
||
|
>>> r = R.from_rotvec([0, 0, np.pi/2])
|
||
|
>>> r.as_matrix()
|
||
|
array([[ 2.22044605e-16, -1.00000000e+00, 0.00000000e+00],
|
||
|
[ 1.00000000e+00, 2.22044605e-16, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
|
||
|
>>> r.apply(vector)
|
||
|
array([2.22044605e-16, 1.00000000e+00, 0.00000000e+00])
|
||
|
>>> r.apply(vector).shape
|
||
|
(3,)
|
||
|
|
||
|
Single rotation applied on multiple vectors:
|
||
|
|
||
|
>>> vectors = np.array([
|
||
|
... [1, 0, 0],
|
||
|
... [1, 2, 3]])
|
||
|
>>> r = R.from_rotvec([0, 0, np.pi/4])
|
||
|
>>> r.as_matrix()
|
||
|
array([[ 0.70710678, -0.70710678, 0. ],
|
||
|
[ 0.70710678, 0.70710678, 0. ],
|
||
|
[ 0. , 0. , 1. ]])
|
||
|
>>> r.apply(vectors)
|
||
|
array([[ 0.70710678, 0.70710678, 0. ],
|
||
|
[-0.70710678, 2.12132034, 3. ]])
|
||
|
>>> r.apply(vectors).shape
|
||
|
(2, 3)
|
||
|
|
||
|
Multiple rotations on a single vector:
|
||
|
|
||
|
>>> r = R.from_rotvec([[0, 0, np.pi/4], [np.pi/2, 0, 0]])
|
||
|
>>> vector = np.array([1,2,3])
|
||
|
>>> r.as_matrix()
|
||
|
array([[[ 7.07106781e-01, -7.07106781e-01, 0.00000000e+00],
|
||
|
[ 7.07106781e-01, 7.07106781e-01, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]],
|
||
|
[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||
|
[ 0.00000000e+00, 2.22044605e-16, -1.00000000e+00],
|
||
|
[ 0.00000000e+00, 1.00000000e+00, 2.22044605e-16]]])
|
||
|
>>> r.apply(vector)
|
||
|
array([[-0.70710678, 2.12132034, 3. ],
|
||
|
[ 1. , -3. , 2. ]])
|
||
|
>>> r.apply(vector).shape
|
||
|
(2, 3)
|
||
|
|
||
|
Multiple rotations on multiple vectors. Each rotation is applied on the
|
||
|
corresponding vector:
|
||
|
|
||
|
>>> r = R.from_euler('zxy', [
|
||
|
... [0, 0, 90],
|
||
|
... [45, 30, 60]], degrees=True)
|
||
|
>>> vectors = [
|
||
|
... [1, 2, 3],
|
||
|
... [1, 0, -1]]
|
||
|
>>> r.apply(vectors)
|
||
|
array([[ 3. , 2. , -1. ],
|
||
|
[-0.09026039, 1.11237244, -0.86860844]])
|
||
|
>>> r.apply(vectors).shape
|
||
|
(2, 3)
|
||
|
|
||
|
It is also possible to apply the inverse rotation:
|
||
|
|
||
|
>>> r = R.from_euler('zxy', [
|
||
|
... [0, 0, 90],
|
||
|
... [45, 30, 60]], degrees=True)
|
||
|
>>> vectors = [
|
||
|
... [1, 2, 3],
|
||
|
... [1, 0, -1]]
|
||
|
>>> r.apply(vectors, inverse=True)
|
||
|
array([[-3. , 2. , 1. ],
|
||
|
[ 1.09533535, -0.8365163 , 0.3169873 ]])
|
||
|
|
||
|
"""
|
||
|
vectors = np.asarray(vectors)
|
||
|
if vectors.ndim > 2 or vectors.shape[-1] != 3:
|
||
|
raise ValueError("Expected input of shape (3,) or (P, 3), "
|
||
|
"got {}.".format(vectors.shape))
|
||
|
|
||
|
single_vector = False
|
||
|
if vectors.shape == (3,):
|
||
|
single_vector = True
|
||
|
vectors = vectors[None, :]
|
||
|
|
||
|
matrix = self.as_matrix()
|
||
|
if self._single:
|
||
|
matrix = matrix[None, :, :]
|
||
|
|
||
|
n_vectors = vectors.shape[0]
|
||
|
n_rotations = len(self)
|
||
|
|
||
|
if n_vectors != 1 and n_rotations != 1 and n_vectors != n_rotations:
|
||
|
raise ValueError("Expected equal numbers of rotations and vectors "
|
||
|
", or a single rotation, or a single vector, got "
|
||
|
"{} rotations and {} vectors.".format(
|
||
|
n_rotations, n_vectors))
|
||
|
|
||
|
if inverse:
|
||
|
result = np.einsum('ikj,ik->ij', matrix, vectors)
|
||
|
else:
|
||
|
result = np.einsum('ijk,ik->ij', matrix, vectors)
|
||
|
|
||
|
if self._single and single_vector:
|
||
|
return result[0]
|
||
|
else:
|
||
|
return result
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
"""Compose this rotation with the other.
|
||
|
|
||
|
If `p` and `q` are two rotations, then the composition of 'q followed
|
||
|
by p' is equivalent to `p * q`. In terms of rotation matrices,
|
||
|
the composition can be expressed as
|
||
|
``p.as_matrix().dot(q.as_matrix())``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : `Rotation` instance
|
||
|
Object containing the rotations to be composed with this one. Note
|
||
|
that rotation compositions are not commutative, so ``p * q`` is
|
||
|
different from ``q * p``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
composition : `Rotation` instance
|
||
|
This function supports composition of multiple rotations at a time.
|
||
|
The following cases are possible:
|
||
|
|
||
|
- Either ``p`` or ``q`` contains a single rotation. In this case
|
||
|
`composition` contains the result of composing each rotation in
|
||
|
the other object with the single rotation.
|
||
|
- Both ``p`` and ``q`` contain ``N`` rotations. In this case each
|
||
|
rotation ``p[i]`` is composed with the corresponding rotation
|
||
|
``q[i]`` and `output` contains ``N`` rotations.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Composition of two single rotations:
|
||
|
|
||
|
>>> p = R.from_quat([0, 0, 1, 1])
|
||
|
>>> q = R.from_quat([1, 0, 0, 1])
|
||
|
>>> p.as_matrix()
|
||
|
array([[ 0., -1., 0.],
|
||
|
[ 1., 0., 0.],
|
||
|
[ 0., 0., 1.]])
|
||
|
>>> q.as_matrix()
|
||
|
array([[ 1., 0., 0.],
|
||
|
[ 0., 0., -1.],
|
||
|
[ 0., 1., 0.]])
|
||
|
>>> r = p * q
|
||
|
>>> r.as_matrix()
|
||
|
array([[0., 0., 1.],
|
||
|
[1., 0., 0.],
|
||
|
[0., 1., 0.]])
|
||
|
|
||
|
Composition of two objects containing equal number of rotations:
|
||
|
|
||
|
>>> p = R.from_quat([[0, 0, 1, 1], [1, 0, 0, 1]])
|
||
|
>>> q = R.from_rotvec([[np.pi/4, 0, 0], [-np.pi/4, 0, np.pi/4]])
|
||
|
>>> p.as_quat()
|
||
|
array([[0. , 0. , 0.70710678, 0.70710678],
|
||
|
[0.70710678, 0. , 0. , 0.70710678]])
|
||
|
>>> q.as_quat()
|
||
|
array([[ 0.38268343, 0. , 0. , 0.92387953],
|
||
|
[-0.37282173, 0. , 0.37282173, 0.84971049]])
|
||
|
>>> r = p * q
|
||
|
>>> r.as_quat()
|
||
|
array([[ 0.27059805, 0.27059805, 0.65328148, 0.65328148],
|
||
|
[ 0.33721128, -0.26362477, 0.26362477, 0.86446082]])
|
||
|
|
||
|
"""
|
||
|
if not(len(self) == 1 or len(other) == 1 or len(self) == len(other)):
|
||
|
raise ValueError("Expected equal number of rotations in both "
|
||
|
"or a single rotation in either object, "
|
||
|
"got {} rotations in first and {} rotations in "
|
||
|
"second object.".format(
|
||
|
len(self), len(other)))
|
||
|
result = _compose_quat(self._quat, other._quat)
|
||
|
if self._single and other._single:
|
||
|
result = result[0]
|
||
|
return self.__class__(result, normalize=True, copy=False)
|
||
|
|
||
|
def inv(self):
|
||
|
"""Invert this rotation.
|
||
|
|
||
|
Composition of a rotation with its inverse results in an identity
|
||
|
transformation.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
inverse : `Rotation` instance
|
||
|
Object containing inverse of the rotations in the current instance.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Inverting a single rotation:
|
||
|
|
||
|
>>> p = R.from_euler('z', 45, degrees=True)
|
||
|
>>> q = p.inv()
|
||
|
>>> q.as_euler('zyx', degrees=True)
|
||
|
array([-45., 0., 0.])
|
||
|
|
||
|
Inverting multiple rotations:
|
||
|
|
||
|
>>> p = R.from_rotvec([[0, 0, np.pi/3], [-np.pi/4, 0, 0]])
|
||
|
>>> q = p.inv()
|
||
|
>>> q.as_rotvec()
|
||
|
array([[-0. , -0. , -1.04719755],
|
||
|
[ 0.78539816, -0. , -0. ]])
|
||
|
|
||
|
"""
|
||
|
quat = self._quat.copy()
|
||
|
quat[:, -1] *= -1
|
||
|
if self._single:
|
||
|
quat = quat[0]
|
||
|
return self.__class__(quat, normalize=False, copy=False)
|
||
|
|
||
|
def magnitude(self):
|
||
|
"""Get the magnitude(s) of the rotation(s).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
magnitude : ndarray or float
|
||
|
Angle(s) in radians, float if object contains a single rotation
|
||
|
and ndarray if object contains multiple rotations.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
>>> r = R.from_quat(np.eye(4))
|
||
|
>>> r.magnitude()
|
||
|
array([3.14159265, 3.14159265, 3.14159265, 0. ])
|
||
|
|
||
|
Magnitude of a single rotation:
|
||
|
|
||
|
>>> r[0].magnitude()
|
||
|
3.141592653589793
|
||
|
"""
|
||
|
|
||
|
quat = self._quat.reshape((len(self), 4))
|
||
|
s = np.linalg.norm(quat[:, :3], axis=1)
|
||
|
c = np.abs(quat[:, 3])
|
||
|
angles = 2 * np.arctan2(s, c)
|
||
|
|
||
|
if self._single:
|
||
|
return angles[0]
|
||
|
else:
|
||
|
return angles
|
||
|
|
||
|
def mean(self, weights=None):
|
||
|
"""Get the mean of the rotations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
weights : array_like shape (N,), optional
|
||
|
Weights describing the relative importance of the rotations. If
|
||
|
None (default), then all values in `weights` are assumed to be
|
||
|
equal.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mean : `Rotation` instance
|
||
|
Object containing the mean of the rotations in the current
|
||
|
instance.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The mean used is the chordal L2 mean (also called the projected or
|
||
|
induced arithmetic mean). If ``p`` is a set of rotations with mean
|
||
|
``m``, then ``m`` is the rotation which minimizes
|
||
|
``(weights[:, None, None] * (p.as_matrix() - m.as_matrix())**2).sum()``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
>>> r = R.from_euler('zyx', [[0, 0, 0],
|
||
|
... [1, 0, 0],
|
||
|
... [0, 1, 0],
|
||
|
... [0, 0, 1]], degrees=True)
|
||
|
>>> r.mean().as_euler('zyx', degrees=True)
|
||
|
array([0.24945696, 0.25054542, 0.24945696])
|
||
|
"""
|
||
|
if weights is None:
|
||
|
weights = np.ones(len(self))
|
||
|
else:
|
||
|
weights = np.asarray(weights)
|
||
|
if weights.ndim != 1:
|
||
|
raise ValueError("Expected `weights` to be 1 dimensional, got "
|
||
|
"shape {}.".format(weights.shape))
|
||
|
if weights.shape[0] != len(self):
|
||
|
raise ValueError("Expected `weights` to have number of values "
|
||
|
"equal to number of rotations, got "
|
||
|
"{} values and {} rotations.".format(
|
||
|
weights.shape[0], len(self)))
|
||
|
if np.any(weights < 0):
|
||
|
raise ValueError("`weights` must be non-negative.")
|
||
|
|
||
|
K = np.dot(weights * self._quat.T, self._quat)
|
||
|
l, v = np.linalg.eigh(K)
|
||
|
return self.__class__(v[:, -1], normalize=False)
|
||
|
|
||
|
def reduce(self, left=None, right=None, return_indices=False):
|
||
|
"""Reduce this rotation with the provided rotation groups.
|
||
|
|
||
|
Reduction of a rotation ``p`` is a transformation of the form
|
||
|
``q = l * p * r``, where ``l`` and ``r`` are chosen from `left` and
|
||
|
`right` respectively, such that rotation ``q`` has the smallest
|
||
|
magnitude.
|
||
|
|
||
|
If `left` and `right` are rotation groups representing symmetries of
|
||
|
two objects rotated by ``p``, then ``q`` is the rotation of the
|
||
|
smallest magnitude to align these objects considering their symmetries.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
left : `Rotation` instance, optional
|
||
|
Object containing the left rotation(s). Default value (None)
|
||
|
corresponds to the identity rotation.
|
||
|
right : `Rotation` instance, optional
|
||
|
Object containing the right rotation(s). Default value (None)
|
||
|
corresponds to the identity rotation.
|
||
|
return_indices : bool, optional
|
||
|
Whether to return the indices of the rotations from `left` and
|
||
|
`right` used for reduction.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
reduced : `Rotation` instance
|
||
|
Object containing reduced rotations.
|
||
|
left_best, right_best: integer ndarray
|
||
|
Indices of elements from `left` and `right` used for reduction.
|
||
|
"""
|
||
|
if left is None and right is None:
|
||
|
reduced = self.__class__(self._quat, normalize=False, copy=True)
|
||
|
if return_indices:
|
||
|
return reduced, None, None
|
||
|
else:
|
||
|
return reduced
|
||
|
elif right is None:
|
||
|
right = Rotation.identity()
|
||
|
elif left is None:
|
||
|
left = Rotation.identity()
|
||
|
|
||
|
# Levi-Civita tensor for triple product computations
|
||
|
e = np.zeros((3, 3, 3))
|
||
|
e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = 1
|
||
|
e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1
|
||
|
|
||
|
# We want to calculate the real components of q = l * p * r. It can
|
||
|
# be shown that:
|
||
|
# qs = ls * ps * rs - ls * dot(pv, rv) - ps * dot(lv, rv)
|
||
|
# - rs * dot(lv, pv) - dot(cross(lv, pv), rv)
|
||
|
# where ls and lv denote the scalar and vector components of l.
|
||
|
|
||
|
def split_rotation(R):
|
||
|
q = np.atleast_2d(R.as_quat())
|
||
|
return q[:, -1], q[:, :-1]
|
||
|
|
||
|
p = self
|
||
|
ps, pv = split_rotation(p)
|
||
|
ls, lv = split_rotation(left)
|
||
|
rs, rv = split_rotation(right)
|
||
|
|
||
|
qs = np.abs(np.einsum('i,j,k', ls, ps, rs) -
|
||
|
np.einsum('i,jx,kx', ls, pv, rv) -
|
||
|
np.einsum('ix,j,kx', lv, ps, rv) -
|
||
|
np.einsum('ix,jx,k', lv, pv, rs) -
|
||
|
np.einsum('xyz,ix,jy,kz', e, lv, pv, rv))
|
||
|
qs = np.reshape(np.rollaxis(qs, 1), (qs.shape[1], -1))
|
||
|
|
||
|
# Find best indices from scalar components
|
||
|
max_ind = np.argmax(np.reshape(qs, (len(qs), -1)), axis=1)
|
||
|
left_best = max_ind // len(right)
|
||
|
right_best = max_ind % len(right)
|
||
|
|
||
|
# Reduce the rotation using the best indices
|
||
|
reduced = left[left_best] * p * right[right_best]
|
||
|
if self._single:
|
||
|
reduced = reduced[0]
|
||
|
left_best = left_best[0]
|
||
|
right_best = right_best[0]
|
||
|
|
||
|
if return_indices:
|
||
|
if left is None:
|
||
|
left_best = None
|
||
|
if right is None:
|
||
|
right_best = None
|
||
|
return reduced, left_best, right_best
|
||
|
else:
|
||
|
return reduced
|
||
|
|
||
|
@classmethod
|
||
|
def create_group(cls, group, axis='Z'):
|
||
|
"""Create a 3D rotation group.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
group : string
|
||
|
The name of the group. Must be one of 'I', 'O', 'T', 'Dn', 'Cn',
|
||
|
where `n` is a positive integer. The groups are:
|
||
|
|
||
|
* I: Icosahedral group
|
||
|
* O: Octahedral group
|
||
|
* T: Tetrahedral group
|
||
|
* D: Dicyclic group
|
||
|
* C: Cyclic group
|
||
|
|
||
|
axis : integer
|
||
|
The cyclic rotation axis. Must be one of ['X', 'Y', 'Z'] (or
|
||
|
lowercase). Default is 'Z'. Ignored for groups 'I', 'O', and 'T'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Object containing the elements of the rotation group.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method generates rotation groups only. The full 3-dimensional
|
||
|
point groups [PointGroups]_ also contain reflections.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [PointGroups] `Point groups
|
||
|
<https://en.wikipedia.org/wiki/Point_groups_in_three_dimensions>`_
|
||
|
on Wikipedia.
|
||
|
"""
|
||
|
return create_group(cls, group, axis=axis)
|
||
|
|
||
|
def __getitem__(self, indexer):
|
||
|
"""Extract rotation(s) at given index(es) from object.
|
||
|
|
||
|
Create a new `Rotation` instance containing a subset of rotations
|
||
|
stored in this object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indexer : index, slice, or index array
|
||
|
Specifies which rotation(s) to extract. A single indexer must be
|
||
|
specified, i.e. as if indexing a 1 dimensional array or list.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rotation : `Rotation` instance
|
||
|
Contains
|
||
|
- a single rotation, if `indexer` is a single index
|
||
|
- a stack of rotation(s), if `indexer` is a slice, or and index
|
||
|
array.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
>>> r = R.from_quat([
|
||
|
... [1, 1, 0, 0],
|
||
|
... [0, 1, 0, 1],
|
||
|
... [1, 1, -1, 0]])
|
||
|
>>> r.as_quat()
|
||
|
array([[ 0.70710678, 0.70710678, 0. , 0. ],
|
||
|
[ 0. , 0.70710678, 0. , 0.70710678],
|
||
|
[ 0.57735027, 0.57735027, -0.57735027, 0. ]])
|
||
|
|
||
|
Indexing using a single index:
|
||
|
|
||
|
>>> p = r[0]
|
||
|
>>> p.as_quat()
|
||
|
array([0.70710678, 0.70710678, 0. , 0. ])
|
||
|
|
||
|
Array slicing:
|
||
|
|
||
|
>>> q = r[1:3]
|
||
|
>>> q.as_quat()
|
||
|
array([[ 0. , 0.70710678, 0. , 0.70710678],
|
||
|
[ 0.57735027, 0.57735027, -0.57735027, 0. ]])
|
||
|
|
||
|
"""
|
||
|
return self.__class__(self._quat[indexer], normalize=False)
|
||
|
|
||
|
@classmethod
|
||
|
def identity(cls, num=None):
|
||
|
"""Get identity rotation(s).
|
||
|
|
||
|
Composition with the identity rotation has no effect.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
num : int or None, optional
|
||
|
Number of identity rotations to generate. If None (default), then a
|
||
|
single rotation is generated.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
identity : Rotation object
|
||
|
The identity rotation.
|
||
|
"""
|
||
|
if num is None:
|
||
|
q = [0, 0, 0, 1]
|
||
|
else:
|
||
|
q = np.zeros((num, 4))
|
||
|
q[:, 3] = 1
|
||
|
return cls(q, normalize=False)
|
||
|
|
||
|
@classmethod
|
||
|
def random(cls, num=None, random_state=None):
|
||
|
"""Generate uniformly distributed rotations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
num : int or None, optional
|
||
|
Number of random rotations to generate. If None (default), then a
|
||
|
single rotation is generated.
|
||
|
random_state : int, RandomState instance or None, optional
|
||
|
Accepts an integer as a seed for the random generator or a
|
||
|
RandomState object. If None (default), uses global `numpy.random`
|
||
|
random state.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
random_rotation : `Rotation` instance
|
||
|
Contains a single rotation if `num` is None. Otherwise contains a
|
||
|
stack of `num` rotations.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
|
||
|
Sample a single rotation:
|
||
|
|
||
|
>>> R.random(random_state=1234).as_euler('zxy', degrees=True)
|
||
|
array([-110.5976185 , 55.32758512, 76.3289269 ])
|
||
|
|
||
|
Sample a stack of rotations:
|
||
|
|
||
|
>>> R.random(5, random_state=1234).as_euler('zxy', degrees=True)
|
||
|
array([[-110.5976185 , 55.32758512, 76.3289269 ],
|
||
|
[ -91.59132005, -14.3629884 , -93.91933182],
|
||
|
[ 25.23835501, 45.02035145, -121.67867086],
|
||
|
[ -51.51414184, -15.29022692, -172.46870023],
|
||
|
[ -81.63376847, -27.39521579, 2.60408416]])
|
||
|
|
||
|
"""
|
||
|
random_state = check_random_state(random_state)
|
||
|
|
||
|
if num is None:
|
||
|
sample = random_state.normal(size=4)
|
||
|
else:
|
||
|
sample = random_state.normal(size=(num, 4))
|
||
|
|
||
|
return cls(sample)
|
||
|
|
||
|
@classmethod
|
||
|
@np.deprecate(message="match_vectors is deprecated in favor of "
|
||
|
"align_vectors in scipy 1.4.0 and will be removed "
|
||
|
"in scipy 1.6.0")
|
||
|
def match_vectors(cls, a, b, weights=None, normalized=False):
|
||
|
"""Deprecated in favor of `align_vectors`."""
|
||
|
a = np.asarray(a)
|
||
|
if a.ndim != 2 or a.shape[-1] != 3:
|
||
|
raise ValueError("Expected input `a` to have shape (N, 3), "
|
||
|
"got {}".format(a.shape))
|
||
|
b = np.asarray(b)
|
||
|
if b.ndim != 2 or b.shape[-1] != 3:
|
||
|
raise ValueError("Expected input `b` to have shape (N, 3), "
|
||
|
"got {}.".format(b.shape))
|
||
|
|
||
|
if a.shape != b.shape:
|
||
|
raise ValueError("Expected inputs `a` and `b` to have same shapes"
|
||
|
", got {} and {} respectively.".format(
|
||
|
a.shape, b.shape))
|
||
|
|
||
|
if b.shape[0] == 1:
|
||
|
raise ValueError("Rotation cannot be estimated using a single "
|
||
|
"vector.")
|
||
|
|
||
|
if weights is None:
|
||
|
weights = np.ones(b.shape[0])
|
||
|
else:
|
||
|
weights = np.asarray(weights)
|
||
|
if weights.ndim != 1:
|
||
|
raise ValueError("Expected `weights` to be 1 dimensional, got "
|
||
|
"shape {}.".format(weights.shape))
|
||
|
if weights.shape[0] != b.shape[0]:
|
||
|
raise ValueError("Expected `weights` to have number of values "
|
||
|
"equal to number of input vectors, got "
|
||
|
"{} values and {} vectors.".format(
|
||
|
weights.shape[0], b.shape[0]))
|
||
|
weights = weights / np.sum(weights)
|
||
|
|
||
|
if not normalized:
|
||
|
a = a / scipy.linalg.norm(a, axis=1)[:, None]
|
||
|
b = b / scipy.linalg.norm(b, axis=1)[:, None]
|
||
|
|
||
|
B = np.einsum('ji,jk->ik', weights[:, None] * a, b)
|
||
|
u, s, vh = np.linalg.svd(B)
|
||
|
|
||
|
# Correct improper rotation if necessary (as in Kabsch algorithm)
|
||
|
if np.linalg.det(u @ vh) < 0:
|
||
|
s[-1] = -s[-1]
|
||
|
u[:, -1] = -u[:, -1]
|
||
|
|
||
|
C = np.dot(u, vh)
|
||
|
|
||
|
zeta = (s[0]+s[1]) * (s[1]+s[2]) * (s[2]+s[0])
|
||
|
if np.abs(zeta) <= 1e-16:
|
||
|
raise ValueError("Three component error vector has infinite "
|
||
|
"covariance. It is impossible to determine the "
|
||
|
"rotation uniquely.")
|
||
|
|
||
|
kappa = s[0]*s[1] + s[1]*s[2] + s[2]*s[0]
|
||
|
sensitivity = ((kappa * np.eye(3) + np.dot(B, B.T)) /
|
||
|
(zeta * a.shape[0]))
|
||
|
return cls.from_matrix(C), sensitivity
|
||
|
|
||
|
@classmethod
|
||
|
def align_vectors(cls, a, b, weights=None, return_sensitivity=False):
|
||
|
"""Estimate a rotation to optimally align two sets of vectors.
|
||
|
|
||
|
Find a rotation between frames A and B which best aligns a set of
|
||
|
vectors `a` and `b` observed in these frames. The following loss
|
||
|
function is minimized to solve for the rotation matrix
|
||
|
:math:`C`:
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
L(C) = \\frac{1}{2} \\sum_{i = 1}^{n} w_i \\lVert \\mathbf{a}_i -
|
||
|
C \\mathbf{b}_i \\rVert^2 ,
|
||
|
|
||
|
where :math:`w_i`'s are the `weights` corresponding to each vector.
|
||
|
|
||
|
The rotation is estimated with Kabsch algorithm [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : array_like, shape (N, 3)
|
||
|
Vector components observed in initial frame A. Each row of `a`
|
||
|
denotes a vector.
|
||
|
b : array_like, shape (N, 3)
|
||
|
Vector components observed in another frame B. Each row of `b`
|
||
|
denotes a vector.
|
||
|
weights : array_like shape (N,), optional
|
||
|
Weights describing the relative importance of the vector
|
||
|
observations. If None (default), then all values in `weights` are
|
||
|
assumed to be 1.
|
||
|
return_sensitivity : bool, optional
|
||
|
Whether to return the sensitivity matrix. See Notes for details.
|
||
|
Default is False.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
estimated_rotation : `Rotation` instance
|
||
|
Best estimate of the rotation that transforms `b` to `a`.
|
||
|
rmsd : float
|
||
|
Root mean square distance (weighted) between the given set of
|
||
|
vectors after alignment. It is equal to ``sqrt(2 * minimum_loss)``,
|
||
|
where ``minimum_loss`` is the loss function evaluated for the
|
||
|
found optimal rotation.
|
||
|
sensitivity_matrix : ndarray, shape (3, 3)
|
||
|
Sensitivity matrix of the estimated rotation estimate as explained
|
||
|
in Notes. Returned only when `return_sensitivity` is True.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This method can also compute the sensitivity of the estimated rotation
|
||
|
to small perturbations of the vector measurements. Specifically we
|
||
|
consider the rotation estimate error as a small rotation vector of
|
||
|
frame A. The sensitivity matrix is proportional to the covariance of
|
||
|
this rotation vector assuming that the vectors in `a` was measured with
|
||
|
errors significantly less than their lengths. To get the true
|
||
|
covariance matrix, the returned sensitivity matrix must be multiplied
|
||
|
by harmonic mean [3]_ of variance in each observation. Note that
|
||
|
`weights` are supposed to be inversely proportional to the observation
|
||
|
variances to get consistent results. For example, if all vectors are
|
||
|
measured with the same accuracy of 0.01 (`weights` must be all equal),
|
||
|
then you should multiple the sensitivity matrix by 0.01**2 to get the
|
||
|
covariance.
|
||
|
|
||
|
Refer to [2]_ for more rigorous discussion of the covariance
|
||
|
estimation.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Kabsch_algorithm
|
||
|
.. [2] F. Landis Markley,
|
||
|
"Attitude determination using vector observations: a fast
|
||
|
optimal matrix algorithm", Journal of Astronautical Sciences,
|
||
|
Vol. 41, No.2, 1993, pp. 261-280.
|
||
|
.. [3] https://en.wikipedia.org/wiki/Harmonic_mean
|
||
|
"""
|
||
|
a = np.asarray(a)
|
||
|
if a.ndim != 2 or a.shape[-1] != 3:
|
||
|
raise ValueError("Expected input `a` to have shape (N, 3), "
|
||
|
"got {}".format(a.shape))
|
||
|
b = np.asarray(b)
|
||
|
if b.ndim != 2 or b.shape[-1] != 3:
|
||
|
raise ValueError("Expected input `b` to have shape (N, 3), "
|
||
|
"got {}.".format(b.shape))
|
||
|
|
||
|
if a.shape != b.shape:
|
||
|
raise ValueError("Expected inputs `a` and `b` to have same shapes"
|
||
|
", got {} and {} respectively.".format(
|
||
|
a.shape, b.shape))
|
||
|
|
||
|
if weights is None:
|
||
|
weights = np.ones(len(b))
|
||
|
else:
|
||
|
weights = np.asarray(weights)
|
||
|
if weights.ndim != 1:
|
||
|
raise ValueError("Expected `weights` to be 1 dimensional, got "
|
||
|
"shape {}.".format(weights.shape))
|
||
|
if weights.shape[0] != b.shape[0]:
|
||
|
raise ValueError("Expected `weights` to have number of values "
|
||
|
"equal to number of input vectors, got "
|
||
|
"{} values and {} vectors.".format(
|
||
|
weights.shape[0], b.shape[0]))
|
||
|
|
||
|
B = np.einsum('ji,jk->ik', weights[:, None] * a, b)
|
||
|
u, s, vh = np.linalg.svd(B)
|
||
|
|
||
|
# Correct improper rotation if necessary (as in Kabsch algorithm)
|
||
|
if np.linalg.det(u @ vh) < 0:
|
||
|
s[-1] = -s[-1]
|
||
|
u[:, -1] = -u[:, -1]
|
||
|
|
||
|
C = np.dot(u, vh)
|
||
|
|
||
|
if s[1] + s[2] < 1e-16 * s[0]:
|
||
|
warnings.warn("Optimal rotation is not uniquely or poorly defined "
|
||
|
"for the given sets of vectors.")
|
||
|
|
||
|
rmsd = np.sqrt(max(
|
||
|
np.sum(weights * np.sum(b ** 2 + a ** 2, axis=1)) - 2 * np.sum(s),
|
||
|
0))
|
||
|
|
||
|
if return_sensitivity:
|
||
|
zeta = (s[0] + s[1]) * (s[1] + s[2]) * (s[2] + s[0])
|
||
|
kappa = s[0] * s[1] + s[1] * s[2] + s[2] * s[0]
|
||
|
with np.errstate(divide='ignore', invalid='ignore'):
|
||
|
sensitivity = np.mean(weights) / zeta * (
|
||
|
kappa * np.eye(3) + np.dot(B, B.T))
|
||
|
return cls.from_matrix(C), rmsd, sensitivity
|
||
|
else:
|
||
|
return cls.from_matrix(C), rmsd
|
||
|
|
||
|
|
||
|
class Slerp(object):
|
||
|
"""Spherical Linear Interpolation of Rotations.
|
||
|
|
||
|
The interpolation between consecutive rotations is performed as a rotation
|
||
|
around a fixed axis with a constant angular velocity [1]_. This ensures
|
||
|
that the interpolated rotations follow the shortest path between initial
|
||
|
and final orientations.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
times : array_like, shape (N,)
|
||
|
Times of the known rotations. At least 2 times must be specified.
|
||
|
rotations : `Rotation` instance
|
||
|
Rotations to perform the interpolation between. Must contain N
|
||
|
rotations.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
__call__
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Rotation
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 1.2.0
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial.transform import Rotation as R
|
||
|
>>> from scipy.spatial.transform import Slerp
|
||
|
|
||
|
Setup the fixed keyframe rotations and times:
|
||
|
|
||
|
>>> key_rots = R.random(5, random_state=2342345)
|
||
|
>>> key_times = [0, 1, 2, 3, 4]
|
||
|
|
||
|
Create the interpolator object:
|
||
|
|
||
|
>>> slerp = Slerp(key_times, key_rots)
|
||
|
|
||
|
Interpolate the rotations at the given times:
|
||
|
|
||
|
>>> times = [0, 0.5, 0.25, 1, 1.5, 2, 2.75, 3, 3.25, 3.60, 4]
|
||
|
>>> interp_rots = slerp(times)
|
||
|
|
||
|
The keyframe rotations expressed as Euler angles:
|
||
|
|
||
|
>>> key_rots.as_euler('xyz', degrees=True)
|
||
|
array([[ 14.31443779, -27.50095894, -3.7275787 ],
|
||
|
[ -1.79924227, -24.69421529, 164.57701743],
|
||
|
[146.15020772, 43.22849451, -31.34891088],
|
||
|
[ 46.39959442, 11.62126073, -45.99719267],
|
||
|
[-88.94647804, -49.64400082, -65.80546984]])
|
||
|
|
||
|
The interpolated rotations expressed as Euler angles. These agree with the
|
||
|
keyframe rotations at both endpoints of the range of keyframe times.
|
||
|
|
||
|
>>> interp_rots.as_euler('xyz', degrees=True)
|
||
|
array([[ 14.31443779, -27.50095894, -3.7275787 ],
|
||
|
[ 4.74588574, -32.44683966, 81.25139984],
|
||
|
[ 10.71094749, -31.56690154, 38.06896408],
|
||
|
[ -1.79924227, -24.69421529, 164.57701743],
|
||
|
[ 11.72796022, 51.64207311, -171.7374683 ],
|
||
|
[ 146.15020772, 43.22849451, -31.34891088],
|
||
|
[ 68.10921869, 20.67625074, -48.74886034],
|
||
|
[ 46.39959442, 11.62126073, -45.99719267],
|
||
|
[ 12.35552615, 4.21525086, -64.89288124],
|
||
|
[ -30.08117143, -19.90769513, -78.98121326],
|
||
|
[ -88.94647804, -49.64400082, -65.80546984]])
|
||
|
|
||
|
"""
|
||
|
def __init__(self, times, rotations):
|
||
|
if len(rotations) == 1:
|
||
|
raise ValueError("`rotations` must contain at least 2 rotations.")
|
||
|
|
||
|
times = np.asarray(times)
|
||
|
if times.ndim != 1:
|
||
|
raise ValueError("Expected times to be specified in a 1 "
|
||
|
"dimensional array, got {} "
|
||
|
"dimensions.".format(times.ndim))
|
||
|
|
||
|
if times.shape[0] != len(rotations):
|
||
|
raise ValueError("Expected number of rotations to be equal to "
|
||
|
"number of timestamps given, got {} rotations "
|
||
|
"and {} timestamps.".format(
|
||
|
len(rotations), times.shape[0]))
|
||
|
self.times = times
|
||
|
self.timedelta = np.diff(times)
|
||
|
|
||
|
if np.any(self.timedelta <= 0):
|
||
|
raise ValueError("Times must be in strictly increasing order.")
|
||
|
|
||
|
self.rotations = rotations[:-1]
|
||
|
self.rotvecs = (self.rotations.inv() * rotations[1:]).as_rotvec()
|
||
|
|
||
|
def __call__(self, times):
|
||
|
"""Interpolate rotations.
|
||
|
|
||
|
Compute the interpolated rotations at the given `times`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
times : array_like
|
||
|
Times to compute the interpolations at. Can be a scalar or
|
||
|
1-dimensional.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
interpolated_rotation : `Rotation` instance
|
||
|
Object containing the rotations computed at given `times`.
|
||
|
|
||
|
"""
|
||
|
# Clearly differentiate from self.times property
|
||
|
compute_times = np.asarray(times)
|
||
|
if compute_times.ndim > 1:
|
||
|
raise ValueError("`times` must be at most 1-dimensional.")
|
||
|
|
||
|
single_time = compute_times.ndim == 0
|
||
|
compute_times = np.atleast_1d(compute_times)
|
||
|
|
||
|
# side = 'left' (default) excludes t_min.
|
||
|
ind = np.searchsorted(self.times, compute_times) - 1
|
||
|
# Include t_min. Without this step, index for t_min equals -1
|
||
|
ind[compute_times == self.times[0]] = 0
|
||
|
if np.any(np.logical_or(ind < 0, ind > len(self.rotations) - 1)):
|
||
|
raise ValueError("Interpolation times must be within the range "
|
||
|
"[{}, {}], both inclusive.".format(
|
||
|
self.times[0], self.times[-1]))
|
||
|
|
||
|
alpha = (compute_times - self.times[ind]) / self.timedelta[ind]
|
||
|
|
||
|
result = (self.rotations[ind] *
|
||
|
Rotation.from_rotvec(self.rotvecs[ind] * alpha[:, None]))
|
||
|
|
||
|
if single_time:
|
||
|
result = result[0]
|
||
|
|
||
|
return result
|