Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1000 lines
38 KiB
1000 lines
38 KiB
4 years ago
|
# Copyright Anne M. Archibald 2008
|
||
|
# Released under the scipy license
|
||
|
import numpy as np
|
||
|
from heapq import heappush, heappop
|
||
|
import scipy.sparse
|
||
|
|
||
|
__all__ = ['minkowski_distance_p', 'minkowski_distance',
|
||
|
'distance_matrix',
|
||
|
'Rectangle', 'KDTree']
|
||
|
|
||
|
|
||
|
def minkowski_distance_p(x, y, p=2):
|
||
|
"""
|
||
|
Compute the pth power of the L**p distance between two arrays.
|
||
|
|
||
|
For efficiency, this function computes the L**p distance but does
|
||
|
not extract the pth root. If `p` is 1 or infinity, this is equal to
|
||
|
the actual L**p distance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : (M, K) array_like
|
||
|
Input array.
|
||
|
y : (N, K) array_like
|
||
|
Input array.
|
||
|
p : float, 1 <= p <= infinity
|
||
|
Which Minkowski p-norm to use.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import minkowski_distance_p
|
||
|
>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
|
||
|
array([2, 1])
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
y = np.asarray(y)
|
||
|
|
||
|
# Find smallest common datatype with float64 (return type of this function) - addresses #10262.
|
||
|
# Don't just cast to float64 for complex input case.
|
||
|
common_datatype = np.promote_types(np.promote_types(x.dtype, y.dtype), 'float64')
|
||
|
|
||
|
# Make sure x and y are NumPy arrays of correct datatype.
|
||
|
x = x.astype(common_datatype)
|
||
|
y = y.astype(common_datatype)
|
||
|
|
||
|
if p == np.inf:
|
||
|
return np.amax(np.abs(y-x), axis=-1)
|
||
|
elif p == 1:
|
||
|
return np.sum(np.abs(y-x), axis=-1)
|
||
|
else:
|
||
|
return np.sum(np.abs(y-x)**p, axis=-1)
|
||
|
|
||
|
|
||
|
def minkowski_distance(x, y, p=2):
|
||
|
"""
|
||
|
Compute the L**p distance between two arrays.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : (M, K) array_like
|
||
|
Input array.
|
||
|
y : (N, K) array_like
|
||
|
Input array.
|
||
|
p : float, 1 <= p <= infinity
|
||
|
Which Minkowski p-norm to use.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import minkowski_distance
|
||
|
>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
|
||
|
array([ 1.41421356, 1. ])
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
y = np.asarray(y)
|
||
|
if p == np.inf or p == 1:
|
||
|
return minkowski_distance_p(x, y, p)
|
||
|
else:
|
||
|
return minkowski_distance_p(x, y, p)**(1./p)
|
||
|
|
||
|
|
||
|
class Rectangle(object):
|
||
|
"""Hyperrectangle class.
|
||
|
|
||
|
Represents a Cartesian product of intervals.
|
||
|
"""
|
||
|
def __init__(self, maxes, mins):
|
||
|
"""Construct a hyperrectangle."""
|
||
|
self.maxes = np.maximum(maxes,mins).astype(float)
|
||
|
self.mins = np.minimum(maxes,mins).astype(float)
|
||
|
self.m, = self.maxes.shape
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "<Rectangle %s>" % list(zip(self.mins, self.maxes))
|
||
|
|
||
|
def volume(self):
|
||
|
"""Total volume."""
|
||
|
return np.prod(self.maxes-self.mins)
|
||
|
|
||
|
def split(self, d, split):
|
||
|
"""
|
||
|
Produce two hyperrectangles by splitting.
|
||
|
|
||
|
In general, if you need to compute maximum and minimum
|
||
|
distances to the children, it can be done more efficiently
|
||
|
by updating the maximum and minimum distances to the parent.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d : int
|
||
|
Axis to split hyperrectangle along.
|
||
|
split : float
|
||
|
Position along axis `d` to split at.
|
||
|
|
||
|
"""
|
||
|
mid = np.copy(self.maxes)
|
||
|
mid[d] = split
|
||
|
less = Rectangle(self.mins, mid)
|
||
|
mid = np.copy(self.mins)
|
||
|
mid[d] = split
|
||
|
greater = Rectangle(mid, self.maxes)
|
||
|
return less, greater
|
||
|
|
||
|
def min_distance_point(self, x, p=2.):
|
||
|
"""
|
||
|
Return the minimum distance between input and points in the hyperrectangle.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input.
|
||
|
p : float, optional
|
||
|
Input.
|
||
|
|
||
|
"""
|
||
|
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p)
|
||
|
|
||
|
def max_distance_point(self, x, p=2.):
|
||
|
"""
|
||
|
Return the maximum distance between input and points in the hyperrectangle.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
Input array.
|
||
|
p : float, optional
|
||
|
Input.
|
||
|
|
||
|
"""
|
||
|
return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p)
|
||
|
|
||
|
def min_distance_rectangle(self, other, p=2.):
|
||
|
"""
|
||
|
Compute the minimum distance between points in the two hyperrectangles.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : hyperrectangle
|
||
|
Input.
|
||
|
p : float
|
||
|
Input.
|
||
|
|
||
|
"""
|
||
|
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p)
|
||
|
|
||
|
def max_distance_rectangle(self, other, p=2.):
|
||
|
"""
|
||
|
Compute the maximum distance between points in the two hyperrectangles.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : hyperrectangle
|
||
|
Input.
|
||
|
p : float, optional
|
||
|
Input.
|
||
|
|
||
|
"""
|
||
|
return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p)
|
||
|
|
||
|
|
||
|
class KDTree(object):
|
||
|
"""
|
||
|
kd-tree for quick nearest-neighbor lookup
|
||
|
|
||
|
This class provides an index into a set of k-D points which
|
||
|
can be used to rapidly look up the nearest neighbors of any point.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : (N,K) array_like
|
||
|
The data points to be indexed. This array is not copied, and
|
||
|
so modifying this data will result in bogus results.
|
||
|
leafsize : int, optional
|
||
|
The number of points at which the algorithm switches over to
|
||
|
brute-force. Has to be positive.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
RuntimeError
|
||
|
The maximum recursion limit can be exceeded for large data
|
||
|
sets. If this happens, either increase the value for the `leafsize`
|
||
|
parameter or increase the recursion limit by::
|
||
|
|
||
|
>>> import sys
|
||
|
>>> sys.setrecursionlimit(10000)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
cKDTree : Implementation of `KDTree` in Cython
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The algorithm used is described in Maneewongvatana and Mount 1999.
|
||
|
The general idea is that the kd-tree is a binary tree, each of whose
|
||
|
nodes represents an axis-aligned hyperrectangle. Each node specifies
|
||
|
an axis and splits the set of points based on whether their coordinate
|
||
|
along that axis is greater than or less than a particular value.
|
||
|
|
||
|
During construction, the axis and splitting point are chosen by the
|
||
|
"sliding midpoint" rule, which ensures that the cells do not all
|
||
|
become long and thin.
|
||
|
|
||
|
The tree can be queried for the r closest neighbors of any given point
|
||
|
(optionally returning only those within some maximum distance of the
|
||
|
point). It can also be queried, with a substantial gain in efficiency,
|
||
|
for the r approximate closest neighbors.
|
||
|
|
||
|
For large dimensions (20 is already large) do not expect this to run
|
||
|
significantly faster than brute force. High-dimensional nearest-neighbor
|
||
|
queries are a substantial open problem in computer science.
|
||
|
|
||
|
The tree also supports all-neighbors queries, both with arrays of points
|
||
|
and with other kd-trees. These do use a reasonably efficient algorithm,
|
||
|
but the kd-tree is not necessarily the best data structure for this
|
||
|
sort of calculation.
|
||
|
|
||
|
"""
|
||
|
def __init__(self, data, leafsize=10):
|
||
|
self.data = np.asarray(data)
|
||
|
if self.data.dtype.kind == 'c':
|
||
|
raise TypeError("KDTree does not work with complex data")
|
||
|
|
||
|
self.n, self.m = np.shape(self.data)
|
||
|
self.leafsize = int(leafsize)
|
||
|
if self.leafsize < 1:
|
||
|
raise ValueError("leafsize must be at least 1")
|
||
|
self.maxes = np.amax(self.data,axis=0)
|
||
|
self.mins = np.amin(self.data,axis=0)
|
||
|
|
||
|
self.tree = self.__build(np.arange(self.n), self.maxes, self.mins)
|
||
|
|
||
|
class node(object):
|
||
|
def __lt__(self, other):
|
||
|
return id(self) < id(other)
|
||
|
|
||
|
def __gt__(self, other):
|
||
|
return id(self) > id(other)
|
||
|
|
||
|
def __le__(self, other):
|
||
|
return id(self) <= id(other)
|
||
|
|
||
|
def __ge__(self, other):
|
||
|
return id(self) >= id(other)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return id(self) == id(other)
|
||
|
|
||
|
class leafnode(node):
|
||
|
def __init__(self, idx):
|
||
|
self.idx = idx
|
||
|
self.children = len(idx)
|
||
|
|
||
|
class innernode(node):
|
||
|
def __init__(self, split_dim, split, less, greater):
|
||
|
self.split_dim = split_dim
|
||
|
self.split = split
|
||
|
self.less = less
|
||
|
self.greater = greater
|
||
|
self.children = less.children+greater.children
|
||
|
|
||
|
def __build(self, idx, maxes, mins):
|
||
|
if len(idx) <= self.leafsize:
|
||
|
return KDTree.leafnode(idx)
|
||
|
else:
|
||
|
data = self.data[idx]
|
||
|
# maxes = np.amax(data,axis=0)
|
||
|
# mins = np.amin(data,axis=0)
|
||
|
d = np.argmax(maxes-mins)
|
||
|
maxval = maxes[d]
|
||
|
minval = mins[d]
|
||
|
if maxval == minval:
|
||
|
# all points are identical; warn user?
|
||
|
return KDTree.leafnode(idx)
|
||
|
data = data[:,d]
|
||
|
|
||
|
# sliding midpoint rule; see Maneewongvatana and Mount 1999
|
||
|
# for arguments that this is a good idea.
|
||
|
split = (maxval+minval)/2
|
||
|
less_idx = np.nonzero(data <= split)[0]
|
||
|
greater_idx = np.nonzero(data > split)[0]
|
||
|
if len(less_idx) == 0:
|
||
|
split = np.amin(data)
|
||
|
less_idx = np.nonzero(data <= split)[0]
|
||
|
greater_idx = np.nonzero(data > split)[0]
|
||
|
if len(greater_idx) == 0:
|
||
|
split = np.amax(data)
|
||
|
less_idx = np.nonzero(data < split)[0]
|
||
|
greater_idx = np.nonzero(data >= split)[0]
|
||
|
if len(less_idx) == 0:
|
||
|
# _still_ zero? all must have the same value
|
||
|
if not np.all(data == data[0]):
|
||
|
raise ValueError("Troublesome data array: %s" % data)
|
||
|
split = data[0]
|
||
|
less_idx = np.arange(len(data)-1)
|
||
|
greater_idx = np.array([len(data)-1])
|
||
|
|
||
|
lessmaxes = np.copy(maxes)
|
||
|
lessmaxes[d] = split
|
||
|
greatermins = np.copy(mins)
|
||
|
greatermins[d] = split
|
||
|
return KDTree.innernode(d, split,
|
||
|
self.__build(idx[less_idx],lessmaxes,mins),
|
||
|
self.__build(idx[greater_idx],maxes,greatermins))
|
||
|
|
||
|
def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
|
||
|
|
||
|
side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x))
|
||
|
if p != np.inf:
|
||
|
side_distances **= p
|
||
|
min_distance = np.sum(side_distances)
|
||
|
else:
|
||
|
min_distance = np.amax(side_distances)
|
||
|
|
||
|
# priority queue for chasing nodes
|
||
|
# entries are:
|
||
|
# minimum distance between the cell and the target
|
||
|
# distances between the nearest side of the cell and the target
|
||
|
# the head node of the cell
|
||
|
q = [(min_distance,
|
||
|
tuple(side_distances),
|
||
|
self.tree)]
|
||
|
# priority queue for the nearest neighbors
|
||
|
# furthest known neighbor first
|
||
|
# entries are (-distance**p, i)
|
||
|
neighbors = []
|
||
|
|
||
|
if eps == 0:
|
||
|
epsfac = 1
|
||
|
elif p == np.inf:
|
||
|
epsfac = 1/(1+eps)
|
||
|
else:
|
||
|
epsfac = 1/(1+eps)**p
|
||
|
|
||
|
if p != np.inf and distance_upper_bound != np.inf:
|
||
|
distance_upper_bound = distance_upper_bound**p
|
||
|
|
||
|
while q:
|
||
|
min_distance, side_distances, node = heappop(q)
|
||
|
if isinstance(node, KDTree.leafnode):
|
||
|
# brute-force
|
||
|
data = self.data[node.idx]
|
||
|
ds = minkowski_distance_p(data,x[np.newaxis,:],p)
|
||
|
for i in range(len(ds)):
|
||
|
if ds[i] < distance_upper_bound:
|
||
|
if len(neighbors) == k:
|
||
|
heappop(neighbors)
|
||
|
heappush(neighbors, (-ds[i], node.idx[i]))
|
||
|
if len(neighbors) == k:
|
||
|
distance_upper_bound = -neighbors[0][0]
|
||
|
else:
|
||
|
# we don't push cells that are too far onto the queue at all,
|
||
|
# but since the distance_upper_bound decreases, we might get
|
||
|
# here even if the cell's too far
|
||
|
if min_distance > distance_upper_bound*epsfac:
|
||
|
# since this is the nearest cell, we're done, bail out
|
||
|
break
|
||
|
# compute minimum distances to the children and push them on
|
||
|
if x[node.split_dim] < node.split:
|
||
|
near, far = node.less, node.greater
|
||
|
else:
|
||
|
near, far = node.greater, node.less
|
||
|
|
||
|
# near child is at the same distance as the current node
|
||
|
heappush(q,(min_distance, side_distances, near))
|
||
|
|
||
|
# far child is further by an amount depending only
|
||
|
# on the split value
|
||
|
sd = list(side_distances)
|
||
|
if p == np.inf:
|
||
|
min_distance = max(min_distance, abs(node.split-x[node.split_dim]))
|
||
|
elif p == 1:
|
||
|
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])
|
||
|
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
|
||
|
else:
|
||
|
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p
|
||
|
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
|
||
|
|
||
|
# far child might be too far, if so, don't bother pushing it
|
||
|
if min_distance <= distance_upper_bound*epsfac:
|
||
|
heappush(q,(min_distance, tuple(sd), far))
|
||
|
|
||
|
if p == np.inf:
|
||
|
return sorted([(-d,i) for (d,i) in neighbors])
|
||
|
else:
|
||
|
return sorted([((-d)**(1./p),i) for (d,i) in neighbors])
|
||
|
|
||
|
def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
|
||
|
"""
|
||
|
Query the kd-tree for nearest neighbors
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like, last dimension self.m
|
||
|
An array of points to query.
|
||
|
k : int, optional
|
||
|
The number of nearest neighbors to return.
|
||
|
eps : nonnegative float, optional
|
||
|
Return approximate nearest neighbors; the kth returned value
|
||
|
is guaranteed to be no further than (1+eps) times the
|
||
|
distance to the real kth nearest neighbor.
|
||
|
p : float, 1<=p<=infinity, optional
|
||
|
Which Minkowski p-norm to use.
|
||
|
1 is the sum-of-absolute-values "Manhattan" distance
|
||
|
2 is the usual Euclidean distance
|
||
|
infinity is the maximum-coordinate-difference distance
|
||
|
distance_upper_bound : nonnegative float, optional
|
||
|
Return only neighbors within this distance. This is used to prune
|
||
|
tree searches, so if you are doing a series of nearest-neighbor
|
||
|
queries, it may help to supply the distance to the nearest neighbor
|
||
|
of the most recent point.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
d : float or array of floats
|
||
|
The distances to the nearest neighbors.
|
||
|
If x has shape tuple+(self.m,), then d has shape tuple if
|
||
|
k is one, or tuple+(k,) if k is larger than one. Missing
|
||
|
neighbors (e.g. when k > n or distance_upper_bound is
|
||
|
given) are indicated with infinite distances. If k is None,
|
||
|
then d is an object array of shape tuple, containing lists
|
||
|
of distances. In either case the hits are sorted by distance
|
||
|
(nearest first).
|
||
|
i : integer or array of integers
|
||
|
The locations of the neighbors in self.data. i is the same
|
||
|
shape as d.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import spatial
|
||
|
>>> x, y = np.mgrid[0:5, 2:8]
|
||
|
>>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel())))
|
||
|
>>> tree.data
|
||
|
array([[0, 2],
|
||
|
[0, 3],
|
||
|
[0, 4],
|
||
|
[0, 5],
|
||
|
[0, 6],
|
||
|
[0, 7],
|
||
|
[1, 2],
|
||
|
[1, 3],
|
||
|
[1, 4],
|
||
|
[1, 5],
|
||
|
[1, 6],
|
||
|
[1, 7],
|
||
|
[2, 2],
|
||
|
[2, 3],
|
||
|
[2, 4],
|
||
|
[2, 5],
|
||
|
[2, 6],
|
||
|
[2, 7],
|
||
|
[3, 2],
|
||
|
[3, 3],
|
||
|
[3, 4],
|
||
|
[3, 5],
|
||
|
[3, 6],
|
||
|
[3, 7],
|
||
|
[4, 2],
|
||
|
[4, 3],
|
||
|
[4, 4],
|
||
|
[4, 5],
|
||
|
[4, 6],
|
||
|
[4, 7]])
|
||
|
>>> pts = np.array([[0, 0], [2.1, 2.9]])
|
||
|
>>> tree.query(pts)
|
||
|
(array([ 2. , 0.14142136]), array([ 0, 13]))
|
||
|
>>> tree.query(pts[0])
|
||
|
(2.0, 0)
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
if x.dtype.kind == 'c':
|
||
|
raise TypeError("KDTree does not work with complex data")
|
||
|
if np.shape(x)[-1] != self.m:
|
||
|
raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x)))
|
||
|
if p < 1:
|
||
|
raise ValueError("Only p-norms with 1<=p<=infinity permitted")
|
||
|
retshape = np.shape(x)[:-1]
|
||
|
if retshape != ():
|
||
|
if k is None:
|
||
|
dd = np.empty(retshape,dtype=object)
|
||
|
ii = np.empty(retshape,dtype=object)
|
||
|
elif k > 1:
|
||
|
dd = np.empty(retshape+(k,),dtype=float)
|
||
|
dd.fill(np.inf)
|
||
|
ii = np.empty(retshape+(k,),dtype=int)
|
||
|
ii.fill(self.n)
|
||
|
elif k == 1:
|
||
|
dd = np.empty(retshape,dtype=float)
|
||
|
dd.fill(np.inf)
|
||
|
ii = np.empty(retshape,dtype=int)
|
||
|
ii.fill(self.n)
|
||
|
else:
|
||
|
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
|
||
|
for c in np.ndindex(retshape):
|
||
|
hits = self.__query(x[c], k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
|
||
|
if k is None:
|
||
|
dd[c] = [d for (d,i) in hits]
|
||
|
ii[c] = [i for (d,i) in hits]
|
||
|
elif k > 1:
|
||
|
for j in range(len(hits)):
|
||
|
dd[c+(j,)], ii[c+(j,)] = hits[j]
|
||
|
elif k == 1:
|
||
|
if len(hits) > 0:
|
||
|
dd[c], ii[c] = hits[0]
|
||
|
else:
|
||
|
dd[c] = np.inf
|
||
|
ii[c] = self.n
|
||
|
return dd, ii
|
||
|
else:
|
||
|
hits = self.__query(x, k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
|
||
|
if k is None:
|
||
|
return [d for (d,i) in hits], [i for (d,i) in hits]
|
||
|
elif k == 1:
|
||
|
if len(hits) > 0:
|
||
|
return hits[0]
|
||
|
else:
|
||
|
return np.inf, self.n
|
||
|
elif k > 1:
|
||
|
dd = np.empty(k,dtype=float)
|
||
|
dd.fill(np.inf)
|
||
|
ii = np.empty(k,dtype=int)
|
||
|
ii.fill(self.n)
|
||
|
for j in range(len(hits)):
|
||
|
dd[j], ii[j] = hits[j]
|
||
|
return dd, ii
|
||
|
else:
|
||
|
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
|
||
|
|
||
|
def __query_ball_point(self, x, r, p=2., eps=0):
|
||
|
R = Rectangle(self.maxes, self.mins)
|
||
|
|
||
|
def traverse_checking(node, rect):
|
||
|
if rect.min_distance_point(x, p) > r / (1. + eps):
|
||
|
return []
|
||
|
elif rect.max_distance_point(x, p) < r * (1. + eps):
|
||
|
return traverse_no_checking(node)
|
||
|
elif isinstance(node, KDTree.leafnode):
|
||
|
d = self.data[node.idx]
|
||
|
return node.idx[minkowski_distance(d, x, p) <= r].tolist()
|
||
|
else:
|
||
|
less, greater = rect.split(node.split_dim, node.split)
|
||
|
return traverse_checking(node.less, less) + \
|
||
|
traverse_checking(node.greater, greater)
|
||
|
|
||
|
def traverse_no_checking(node):
|
||
|
if isinstance(node, KDTree.leafnode):
|
||
|
return node.idx.tolist()
|
||
|
else:
|
||
|
return traverse_no_checking(node.less) + \
|
||
|
traverse_no_checking(node.greater)
|
||
|
|
||
|
return traverse_checking(self.tree, R)
|
||
|
|
||
|
def query_ball_point(self, x, r, p=2., eps=0):
|
||
|
"""Find all points within distance r of point(s) x.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like, shape tuple + (self.m,)
|
||
|
The point or points to search for neighbors of.
|
||
|
r : positive float
|
||
|
The radius of points to return.
|
||
|
p : float, optional
|
||
|
Which Minkowski p-norm to use. Should be in the range [1, inf].
|
||
|
eps : nonnegative float, optional
|
||
|
Approximate search. Branches of the tree are not explored if their
|
||
|
nearest points are further than ``r / (1 + eps)``, and branches are
|
||
|
added in bulk if their furthest points are nearer than
|
||
|
``r * (1 + eps)``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : list or array of lists
|
||
|
If `x` is a single point, returns a list of the indices of the
|
||
|
neighbors of `x`. If `x` is an array of points, returns an object
|
||
|
array of shape tuple containing lists of neighbors.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
If you have many points whose neighbors you want to find, you may save
|
||
|
substantial amounts of time by putting them in a KDTree and using
|
||
|
query_ball_tree.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import spatial
|
||
|
>>> x, y = np.mgrid[0:5, 0:5]
|
||
|
>>> points = np.c_[x.ravel(), y.ravel()]
|
||
|
>>> tree = spatial.KDTree(points)
|
||
|
>>> tree.query_ball_point([2, 0], 1)
|
||
|
[5, 10, 11, 15]
|
||
|
|
||
|
Query multiple points and plot the results:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> points = np.asarray(points)
|
||
|
>>> plt.plot(points[:,0], points[:,1], '.')
|
||
|
>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
|
||
|
... nearby_points = points[results]
|
||
|
... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
|
||
|
>>> plt.margins(0.1, 0.1)
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
if x.dtype.kind == 'c':
|
||
|
raise TypeError("KDTree does not work with complex data")
|
||
|
if x.shape[-1] != self.m:
|
||
|
raise ValueError("Searching for a %d-dimensional point in a "
|
||
|
"%d-dimensional KDTree" % (x.shape[-1], self.m))
|
||
|
if len(x.shape) == 1:
|
||
|
return self.__query_ball_point(x, r, p, eps)
|
||
|
else:
|
||
|
retshape = x.shape[:-1]
|
||
|
result = np.empty(retshape, dtype=object)
|
||
|
for c in np.ndindex(retshape):
|
||
|
result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps)
|
||
|
return result
|
||
|
|
||
|
def query_ball_tree(self, other, r, p=2., eps=0):
|
||
|
"""Find all pairs of points whose distance is at most r
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : KDTree instance
|
||
|
The tree containing points to search against.
|
||
|
r : float
|
||
|
The maximum distance, has to be positive.
|
||
|
p : float, optional
|
||
|
Which Minkowski norm to use. `p` has to meet the condition
|
||
|
``1 <= p <= infinity``.
|
||
|
eps : float, optional
|
||
|
Approximate search. Branches of the tree are not explored
|
||
|
if their nearest points are further than ``r/(1+eps)``, and
|
||
|
branches are added in bulk if their furthest points are nearer
|
||
|
than ``r * (1+eps)``. `eps` has to be non-negative.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : list of lists
|
||
|
For each element ``self.data[i]`` of this tree, ``results[i]`` is a
|
||
|
list of the indices of its neighbors in ``other.data``.
|
||
|
|
||
|
"""
|
||
|
results = [[] for i in range(self.n)]
|
||
|
|
||
|
def traverse_checking(node1, rect1, node2, rect2):
|
||
|
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
|
||
|
return
|
||
|
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
|
||
|
traverse_no_checking(node1, node2)
|
||
|
elif isinstance(node1, KDTree.leafnode):
|
||
|
if isinstance(node2, KDTree.leafnode):
|
||
|
d = other.data[node2.idx]
|
||
|
for i in node1.idx:
|
||
|
results[i] += node2.idx[minkowski_distance(d,self.data[i],p) <= r].tolist()
|
||
|
else:
|
||
|
less, greater = rect2.split(node2.split_dim, node2.split)
|
||
|
traverse_checking(node1,rect1,node2.less,less)
|
||
|
traverse_checking(node1,rect1,node2.greater,greater)
|
||
|
elif isinstance(node2, KDTree.leafnode):
|
||
|
less, greater = rect1.split(node1.split_dim, node1.split)
|
||
|
traverse_checking(node1.less,less,node2,rect2)
|
||
|
traverse_checking(node1.greater,greater,node2,rect2)
|
||
|
else:
|
||
|
less1, greater1 = rect1.split(node1.split_dim, node1.split)
|
||
|
less2, greater2 = rect2.split(node2.split_dim, node2.split)
|
||
|
traverse_checking(node1.less,less1,node2.less,less2)
|
||
|
traverse_checking(node1.less,less1,node2.greater,greater2)
|
||
|
traverse_checking(node1.greater,greater1,node2.less,less2)
|
||
|
traverse_checking(node1.greater,greater1,node2.greater,greater2)
|
||
|
|
||
|
def traverse_no_checking(node1, node2):
|
||
|
if isinstance(node1, KDTree.leafnode):
|
||
|
if isinstance(node2, KDTree.leafnode):
|
||
|
for i in node1.idx:
|
||
|
results[i] += node2.idx.tolist()
|
||
|
else:
|
||
|
traverse_no_checking(node1, node2.less)
|
||
|
traverse_no_checking(node1, node2.greater)
|
||
|
else:
|
||
|
traverse_no_checking(node1.less, node2)
|
||
|
traverse_no_checking(node1.greater, node2)
|
||
|
|
||
|
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
|
||
|
other.tree, Rectangle(other.maxes, other.mins))
|
||
|
return results
|
||
|
|
||
|
def query_pairs(self, r, p=2., eps=0):
|
||
|
"""
|
||
|
Find all pairs of points within a distance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
r : positive float
|
||
|
The maximum distance.
|
||
|
p : float, optional
|
||
|
Which Minkowski norm to use. `p` has to meet the condition
|
||
|
``1 <= p <= infinity``.
|
||
|
eps : float, optional
|
||
|
Approximate search. Branches of the tree are not explored
|
||
|
if their nearest points are further than ``r/(1+eps)``, and
|
||
|
branches are added in bulk if their furthest points are nearer
|
||
|
than ``r * (1+eps)``. `eps` has to be non-negative.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
results : set
|
||
|
Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
|
||
|
positions are close.
|
||
|
|
||
|
"""
|
||
|
results = set()
|
||
|
|
||
|
def traverse_checking(node1, rect1, node2, rect2):
|
||
|
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
|
||
|
return
|
||
|
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
|
||
|
traverse_no_checking(node1, node2)
|
||
|
elif isinstance(node1, KDTree.leafnode):
|
||
|
if isinstance(node2, KDTree.leafnode):
|
||
|
# Special care to avoid duplicate pairs
|
||
|
if id(node1) == id(node2):
|
||
|
d = self.data[node2.idx]
|
||
|
for i in node1.idx:
|
||
|
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
|
||
|
if i < j:
|
||
|
results.add((i,j))
|
||
|
else:
|
||
|
d = self.data[node2.idx]
|
||
|
for i in node1.idx:
|
||
|
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
|
||
|
if i < j:
|
||
|
results.add((i,j))
|
||
|
elif j < i:
|
||
|
results.add((j,i))
|
||
|
else:
|
||
|
less, greater = rect2.split(node2.split_dim, node2.split)
|
||
|
traverse_checking(node1,rect1,node2.less,less)
|
||
|
traverse_checking(node1,rect1,node2.greater,greater)
|
||
|
elif isinstance(node2, KDTree.leafnode):
|
||
|
less, greater = rect1.split(node1.split_dim, node1.split)
|
||
|
traverse_checking(node1.less,less,node2,rect2)
|
||
|
traverse_checking(node1.greater,greater,node2,rect2)
|
||
|
else:
|
||
|
less1, greater1 = rect1.split(node1.split_dim, node1.split)
|
||
|
less2, greater2 = rect2.split(node2.split_dim, node2.split)
|
||
|
traverse_checking(node1.less,less1,node2.less,less2)
|
||
|
traverse_checking(node1.less,less1,node2.greater,greater2)
|
||
|
|
||
|
# Avoid traversing (node1.less, node2.greater) and
|
||
|
# (node1.greater, node2.less) (it's the same node pair twice
|
||
|
# over, which is the source of the complication in the
|
||
|
# original KDTree.query_pairs)
|
||
|
if id(node1) != id(node2):
|
||
|
traverse_checking(node1.greater,greater1,node2.less,less2)
|
||
|
|
||
|
traverse_checking(node1.greater,greater1,node2.greater,greater2)
|
||
|
|
||
|
def traverse_no_checking(node1, node2):
|
||
|
if isinstance(node1, KDTree.leafnode):
|
||
|
if isinstance(node2, KDTree.leafnode):
|
||
|
# Special care to avoid duplicate pairs
|
||
|
if id(node1) == id(node2):
|
||
|
for i in node1.idx:
|
||
|
for j in node2.idx:
|
||
|
if i < j:
|
||
|
results.add((i,j))
|
||
|
else:
|
||
|
for i in node1.idx:
|
||
|
for j in node2.idx:
|
||
|
if i < j:
|
||
|
results.add((i,j))
|
||
|
elif j < i:
|
||
|
results.add((j,i))
|
||
|
else:
|
||
|
traverse_no_checking(node1, node2.less)
|
||
|
traverse_no_checking(node1, node2.greater)
|
||
|
else:
|
||
|
# Avoid traversing (node1.less, node2.greater) and
|
||
|
# (node1.greater, node2.less) (it's the same node pair twice
|
||
|
# over, which is the source of the complication in the
|
||
|
# original KDTree.query_pairs)
|
||
|
if id(node1) == id(node2):
|
||
|
traverse_no_checking(node1.less, node2.less)
|
||
|
traverse_no_checking(node1.less, node2.greater)
|
||
|
traverse_no_checking(node1.greater, node2.greater)
|
||
|
else:
|
||
|
traverse_no_checking(node1.less, node2)
|
||
|
traverse_no_checking(node1.greater, node2)
|
||
|
|
||
|
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
|
||
|
self.tree, Rectangle(self.maxes, self.mins))
|
||
|
return results
|
||
|
|
||
|
def count_neighbors(self, other, r, p=2.):
|
||
|
"""
|
||
|
Count how many nearby pairs can be formed.
|
||
|
|
||
|
Count the number of pairs (x1,x2) can be formed, with x1 drawn
|
||
|
from self and x2 drawn from ``other``, and where
|
||
|
``distance(x1, x2, p) <= r``.
|
||
|
This is the "two-point correlation" described in Gray and Moore 2000,
|
||
|
"N-body problems in statistical learning", and the code here is based
|
||
|
on their algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : KDTree instance
|
||
|
The other tree to draw points from.
|
||
|
r : float or one-dimensional array of floats
|
||
|
The radius to produce a count for. Multiple radii are searched with
|
||
|
a single tree traversal.
|
||
|
p : float, 1<=p<=infinity, optional
|
||
|
Which Minkowski p-norm to use
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : int or 1-D array of ints
|
||
|
The number of pairs. Note that this is internally stored in a numpy
|
||
|
int, and so may overflow if very large (2e9).
|
||
|
|
||
|
"""
|
||
|
def traverse(node1, rect1, node2, rect2, idx):
|
||
|
min_r = rect1.min_distance_rectangle(rect2,p)
|
||
|
max_r = rect1.max_distance_rectangle(rect2,p)
|
||
|
c_greater = r[idx] > max_r
|
||
|
result[idx[c_greater]] += node1.children*node2.children
|
||
|
idx = idx[(min_r <= r[idx]) & (r[idx] <= max_r)]
|
||
|
if len(idx) == 0:
|
||
|
return
|
||
|
|
||
|
if isinstance(node1,KDTree.leafnode):
|
||
|
if isinstance(node2,KDTree.leafnode):
|
||
|
ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:],
|
||
|
other.data[node2.idx][np.newaxis,:,:],
|
||
|
p).ravel()
|
||
|
ds.sort()
|
||
|
result[idx] += np.searchsorted(ds,r[idx],side='right')
|
||
|
else:
|
||
|
less, greater = rect2.split(node2.split_dim, node2.split)
|
||
|
traverse(node1, rect1, node2.less, less, idx)
|
||
|
traverse(node1, rect1, node2.greater, greater, idx)
|
||
|
else:
|
||
|
if isinstance(node2,KDTree.leafnode):
|
||
|
less, greater = rect1.split(node1.split_dim, node1.split)
|
||
|
traverse(node1.less, less, node2, rect2, idx)
|
||
|
traverse(node1.greater, greater, node2, rect2, idx)
|
||
|
else:
|
||
|
less1, greater1 = rect1.split(node1.split_dim, node1.split)
|
||
|
less2, greater2 = rect2.split(node2.split_dim, node2.split)
|
||
|
traverse(node1.less,less1,node2.less,less2,idx)
|
||
|
traverse(node1.less,less1,node2.greater,greater2,idx)
|
||
|
traverse(node1.greater,greater1,node2.less,less2,idx)
|
||
|
traverse(node1.greater,greater1,node2.greater,greater2,idx)
|
||
|
|
||
|
R1 = Rectangle(self.maxes, self.mins)
|
||
|
R2 = Rectangle(other.maxes, other.mins)
|
||
|
if np.shape(r) == ():
|
||
|
r = np.array([r])
|
||
|
result = np.zeros(1,dtype=int)
|
||
|
traverse(self.tree, R1, other.tree, R2, np.arange(1))
|
||
|
return result[0]
|
||
|
elif len(np.shape(r)) == 1:
|
||
|
r = np.asarray(r)
|
||
|
n, = r.shape
|
||
|
result = np.zeros(n,dtype=int)
|
||
|
traverse(self.tree, R1, other.tree, R2, np.arange(n))
|
||
|
return result
|
||
|
else:
|
||
|
raise ValueError("r must be either a single value or a one-dimensional array of values")
|
||
|
|
||
|
def sparse_distance_matrix(self, other, max_distance, p=2.):
|
||
|
"""
|
||
|
Compute a sparse distance matrix
|
||
|
|
||
|
Computes a distance matrix between two KDTrees, leaving as zero
|
||
|
any distance greater than max_distance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : KDTree
|
||
|
|
||
|
max_distance : positive float
|
||
|
|
||
|
p : float, optional
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : dok_matrix
|
||
|
Sparse matrix representing the results in "dictionary of keys" format.
|
||
|
|
||
|
"""
|
||
|
result = scipy.sparse.dok_matrix((self.n,other.n))
|
||
|
|
||
|
def traverse(node1, rect1, node2, rect2):
|
||
|
if rect1.min_distance_rectangle(rect2, p) > max_distance:
|
||
|
return
|
||
|
elif isinstance(node1, KDTree.leafnode):
|
||
|
if isinstance(node2, KDTree.leafnode):
|
||
|
for i in node1.idx:
|
||
|
for j in node2.idx:
|
||
|
d = minkowski_distance(self.data[i],other.data[j],p)
|
||
|
if d <= max_distance:
|
||
|
result[i,j] = d
|
||
|
else:
|
||
|
less, greater = rect2.split(node2.split_dim, node2.split)
|
||
|
traverse(node1,rect1,node2.less,less)
|
||
|
traverse(node1,rect1,node2.greater,greater)
|
||
|
elif isinstance(node2, KDTree.leafnode):
|
||
|
less, greater = rect1.split(node1.split_dim, node1.split)
|
||
|
traverse(node1.less,less,node2,rect2)
|
||
|
traverse(node1.greater,greater,node2,rect2)
|
||
|
else:
|
||
|
less1, greater1 = rect1.split(node1.split_dim, node1.split)
|
||
|
less2, greater2 = rect2.split(node2.split_dim, node2.split)
|
||
|
traverse(node1.less,less1,node2.less,less2)
|
||
|
traverse(node1.less,less1,node2.greater,greater2)
|
||
|
traverse(node1.greater,greater1,node2.less,less2)
|
||
|
traverse(node1.greater,greater1,node2.greater,greater2)
|
||
|
traverse(self.tree, Rectangle(self.maxes, self.mins),
|
||
|
other.tree, Rectangle(other.maxes, other.mins))
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def distance_matrix(x, y, p=2, threshold=1000000):
|
||
|
"""
|
||
|
Compute the distance matrix.
|
||
|
|
||
|
Returns the matrix of all pair-wise distances.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : (M, K) array_like
|
||
|
Matrix of M vectors in K dimensions.
|
||
|
y : (N, K) array_like
|
||
|
Matrix of N vectors in K dimensions.
|
||
|
p : float, 1 <= p <= infinity
|
||
|
Which Minkowski p-norm to use.
|
||
|
threshold : positive int
|
||
|
If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead
|
||
|
of large temporary arrays.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : (M, N) ndarray
|
||
|
Matrix containing the distance from every vector in `x` to every vector
|
||
|
in `y`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.spatial import distance_matrix
|
||
|
>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
|
||
|
array([[ 1. , 1.41421356],
|
||
|
[ 1.41421356, 1. ]])
|
||
|
|
||
|
"""
|
||
|
|
||
|
x = np.asarray(x)
|
||
|
m, k = x.shape
|
||
|
y = np.asarray(y)
|
||
|
n, kk = y.shape
|
||
|
|
||
|
if k != kk:
|
||
|
raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk))
|
||
|
|
||
|
if m*n*k <= threshold:
|
||
|
return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
|
||
|
else:
|
||
|
result = np.empty((m,n),dtype=float) # FIXME: figure out the best dtype
|
||
|
if m < n:
|
||
|
for i in range(m):
|
||
|
result[i,:] = minkowski_distance(x[i],y,p)
|
||
|
else:
|
||
|
for j in range(n):
|
||
|
result[:,j] = minkowski_distance(x,y[j],p)
|
||
|
return result
|