Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
72 lines
2.0 KiB
72 lines
2.0 KiB
4 years ago
|
import numpy as np
|
||
|
from numpy.testing import assert_array_almost_equal, assert_
|
||
|
from scipy.sparse import csr_matrix, csc_matrix
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
|
||
|
def test_csc_getrow():
|
||
|
N = 10
|
||
|
np.random.seed(0)
|
||
|
X = np.random.random((N, N))
|
||
|
X[X > 0.7] = 0
|
||
|
Xcsc = csc_matrix(X)
|
||
|
|
||
|
for i in range(N):
|
||
|
arr_row = X[i:i + 1, :]
|
||
|
csc_row = Xcsc.getrow(i)
|
||
|
|
||
|
assert_array_almost_equal(arr_row, csc_row.toarray())
|
||
|
assert_(type(csc_row) is csr_matrix)
|
||
|
|
||
|
|
||
|
def test_csc_getcol():
|
||
|
N = 10
|
||
|
np.random.seed(0)
|
||
|
X = np.random.random((N, N))
|
||
|
X[X > 0.7] = 0
|
||
|
Xcsc = csc_matrix(X)
|
||
|
|
||
|
for i in range(N):
|
||
|
arr_col = X[:, i:i + 1]
|
||
|
csc_col = Xcsc.getcol(i)
|
||
|
|
||
|
assert_array_almost_equal(arr_col, csc_col.toarray())
|
||
|
assert_(type(csc_col) is csc_matrix)
|
||
|
|
||
|
@pytest.mark.parametrize("matrix_input, axis, expected_shape",
|
||
|
[(csc_matrix([[1, 0],
|
||
|
[0, 0],
|
||
|
[0, 2]]),
|
||
|
0, (0, 2)),
|
||
|
(csc_matrix([[1, 0],
|
||
|
[0, 0],
|
||
|
[0, 2]]),
|
||
|
1, (3, 0)),
|
||
|
(csc_matrix([[1, 0],
|
||
|
[0, 0],
|
||
|
[0, 2]]),
|
||
|
'both', (0, 0)),
|
||
|
(csc_matrix([[0, 1, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 0, 0],
|
||
|
[0, 0, 2, 3, 0, 1]]),
|
||
|
0, (0, 6))])
|
||
|
def test_csc_empty_slices(matrix_input, axis, expected_shape):
|
||
|
# see gh-11127 for related discussion
|
||
|
slice_1 = matrix_input.A.shape[0] - 1
|
||
|
slice_2 = slice_1
|
||
|
slice_3 = slice_2 - 1
|
||
|
|
||
|
if axis == 0:
|
||
|
actual_shape_1 = matrix_input[slice_1:slice_2, :].A.shape
|
||
|
actual_shape_2 = matrix_input[slice_1:slice_3, :].A.shape
|
||
|
elif axis == 1:
|
||
|
actual_shape_1 = matrix_input[:, slice_1:slice_2].A.shape
|
||
|
actual_shape_2 = matrix_input[:, slice_1:slice_3].A.shape
|
||
|
elif axis == 'both':
|
||
|
actual_shape_1 = matrix_input[slice_1:slice_2, slice_1:slice_2].A.shape
|
||
|
actual_shape_2 = matrix_input[slice_1:slice_3, slice_1:slice_3].A.shape
|
||
|
|
||
|
assert actual_shape_1 == expected_shape
|
||
|
assert actual_shape_1 == actual_shape_2
|