Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
4.5 KiB
170 lines
4.5 KiB
4 years ago
|
"""Functions to extract parts of sparse matrices
|
||
|
"""
|
||
|
|
||
|
__docformat__ = "restructuredtext en"
|
||
|
|
||
|
__all__ = ['find', 'tril', 'triu']
|
||
|
|
||
|
|
||
|
from .coo import coo_matrix
|
||
|
|
||
|
|
||
|
def find(A):
|
||
|
"""Return the indices and values of the nonzero elements of a matrix
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : dense or sparse matrix
|
||
|
Matrix whose nonzero elements are desired.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
(I,J,V) : tuple of arrays
|
||
|
I,J, and V contain the row indices, column indices, and values
|
||
|
of the nonzero matrix entries.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import csr_matrix, find
|
||
|
>>> A = csr_matrix([[7.0, 8.0, 0],[0, 0, 9.0]])
|
||
|
>>> find(A)
|
||
|
(array([0, 0, 1], dtype=int32), array([0, 1, 2], dtype=int32), array([ 7., 8., 9.]))
|
||
|
|
||
|
"""
|
||
|
|
||
|
A = coo_matrix(A, copy=True)
|
||
|
A.sum_duplicates()
|
||
|
# remove explicit zeros
|
||
|
nz_mask = A.data != 0
|
||
|
return A.row[nz_mask], A.col[nz_mask], A.data[nz_mask]
|
||
|
|
||
|
|
||
|
def tril(A, k=0, format=None):
|
||
|
"""Return the lower triangular portion of a matrix in sparse format
|
||
|
|
||
|
Returns the elements on or below the k-th diagonal of the matrix A.
|
||
|
- k = 0 corresponds to the main diagonal
|
||
|
- k > 0 is above the main diagonal
|
||
|
- k < 0 is below the main diagonal
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : dense or sparse matrix
|
||
|
Matrix whose lower trianglar portion is desired.
|
||
|
k : integer : optional
|
||
|
The top-most diagonal of the lower triangle.
|
||
|
format : string
|
||
|
Sparse format of the result, e.g. format="csr", etc.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
L : sparse matrix
|
||
|
Lower triangular portion of A in sparse format.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
triu : upper triangle in sparse format
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import csr_matrix, tril
|
||
|
>>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
|
||
|
... dtype='int32')
|
||
|
>>> A.toarray()
|
||
|
array([[1, 2, 0, 0, 3],
|
||
|
[4, 5, 0, 6, 7],
|
||
|
[0, 0, 8, 9, 0]])
|
||
|
>>> tril(A).toarray()
|
||
|
array([[1, 0, 0, 0, 0],
|
||
|
[4, 5, 0, 0, 0],
|
||
|
[0, 0, 8, 0, 0]])
|
||
|
>>> tril(A).nnz
|
||
|
4
|
||
|
>>> tril(A, k=1).toarray()
|
||
|
array([[1, 2, 0, 0, 0],
|
||
|
[4, 5, 0, 0, 0],
|
||
|
[0, 0, 8, 9, 0]])
|
||
|
>>> tril(A, k=-1).toarray()
|
||
|
array([[0, 0, 0, 0, 0],
|
||
|
[4, 0, 0, 0, 0],
|
||
|
[0, 0, 0, 0, 0]])
|
||
|
>>> tril(A, format='csc')
|
||
|
<3x5 sparse matrix of type '<class 'numpy.int32'>'
|
||
|
with 4 stored elements in Compressed Sparse Column format>
|
||
|
|
||
|
"""
|
||
|
|
||
|
# convert to COOrdinate format where things are easy
|
||
|
A = coo_matrix(A, copy=False)
|
||
|
mask = A.row + k >= A.col
|
||
|
return _masked_coo(A, mask).asformat(format)
|
||
|
|
||
|
|
||
|
def triu(A, k=0, format=None):
|
||
|
"""Return the upper triangular portion of a matrix in sparse format
|
||
|
|
||
|
Returns the elements on or above the k-th diagonal of the matrix A.
|
||
|
- k = 0 corresponds to the main diagonal
|
||
|
- k > 0 is above the main diagonal
|
||
|
- k < 0 is below the main diagonal
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : dense or sparse matrix
|
||
|
Matrix whose upper trianglar portion is desired.
|
||
|
k : integer : optional
|
||
|
The bottom-most diagonal of the upper triangle.
|
||
|
format : string
|
||
|
Sparse format of the result, e.g. format="csr", etc.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
L : sparse matrix
|
||
|
Upper triangular portion of A in sparse format.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
tril : lower triangle in sparse format
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import csr_matrix, triu
|
||
|
>>> A = csr_matrix([[1, 2, 0, 0, 3], [4, 5, 0, 6, 7], [0, 0, 8, 9, 0]],
|
||
|
... dtype='int32')
|
||
|
>>> A.toarray()
|
||
|
array([[1, 2, 0, 0, 3],
|
||
|
[4, 5, 0, 6, 7],
|
||
|
[0, 0, 8, 9, 0]])
|
||
|
>>> triu(A).toarray()
|
||
|
array([[1, 2, 0, 0, 3],
|
||
|
[0, 5, 0, 6, 7],
|
||
|
[0, 0, 8, 9, 0]])
|
||
|
>>> triu(A).nnz
|
||
|
8
|
||
|
>>> triu(A, k=1).toarray()
|
||
|
array([[0, 2, 0, 0, 3],
|
||
|
[0, 0, 0, 6, 7],
|
||
|
[0, 0, 0, 9, 0]])
|
||
|
>>> triu(A, k=-1).toarray()
|
||
|
array([[1, 2, 0, 0, 3],
|
||
|
[4, 5, 0, 6, 7],
|
||
|
[0, 0, 8, 9, 0]])
|
||
|
>>> triu(A, format='csc')
|
||
|
<3x5 sparse matrix of type '<class 'numpy.int32'>'
|
||
|
with 8 stored elements in Compressed Sparse Column format>
|
||
|
|
||
|
"""
|
||
|
|
||
|
# convert to COOrdinate format where things are easy
|
||
|
A = coo_matrix(A, copy=False)
|
||
|
mask = A.row + k <= A.col
|
||
|
return _masked_coo(A, mask).asformat(format)
|
||
|
|
||
|
|
||
|
def _masked_coo(A, mask):
|
||
|
row = A.row[mask]
|
||
|
col = A.col[mask]
|
||
|
data = A.data[mask]
|
||
|
return coo_matrix((data, (row, col)), shape=A.shape, dtype=A.dtype)
|