Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2122 lines
72 KiB
2122 lines
72 KiB
4 years ago
|
"""The suite of window functions."""
|
||
|
|
||
|
import operator
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy import linalg, special, fft as sp_fft
|
||
|
|
||
|
__all__ = ['boxcar', 'triang', 'parzen', 'bohman', 'blackman', 'nuttall',
|
||
|
'blackmanharris', 'flattop', 'bartlett', 'hanning', 'barthann',
|
||
|
'hamming', 'kaiser', 'gaussian', 'general_cosine','general_gaussian',
|
||
|
'general_hamming', 'chebwin', 'slepian', 'cosine', 'hann',
|
||
|
'exponential', 'tukey', 'dpss', 'get_window']
|
||
|
|
||
|
|
||
|
def _len_guards(M):
|
||
|
"""Handle small or incorrect window lengths"""
|
||
|
if int(M) != M or M < 0:
|
||
|
raise ValueError('Window length M must be a non-negative integer')
|
||
|
return M <= 1
|
||
|
|
||
|
|
||
|
def _extend(M, sym):
|
||
|
"""Extend window by 1 sample if needed for DFT-even symmetry"""
|
||
|
if not sym:
|
||
|
return M + 1, True
|
||
|
else:
|
||
|
return M, False
|
||
|
|
||
|
|
||
|
def _truncate(w, needed):
|
||
|
"""Truncate window by 1 sample if needed for DFT-even symmetry"""
|
||
|
if needed:
|
||
|
return w[:-1]
|
||
|
else:
|
||
|
return w
|
||
|
|
||
|
|
||
|
def general_cosine(M, a, sym=True):
|
||
|
r"""
|
||
|
Generic weighted sum of cosine terms window
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window
|
||
|
a : array_like
|
||
|
Sequence of weighting coefficients. This uses the convention of being
|
||
|
centered on the origin, so these will typically all be positive
|
||
|
numbers, not alternating sign.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] A. Nuttall, "Some windows with very good sidelobe behavior," IEEE
|
||
|
Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
|
||
|
no. 1, pp. 84-91, Feb 1981. :doi:`10.1109/TASSP.1981.1163506`.
|
||
|
.. [2] Heinzel G. et al., "Spectrum and spectral density estimation by the
|
||
|
Discrete Fourier transform (DFT), including a comprehensive list of
|
||
|
window functions and some new flat-top windows", February 15, 2002
|
||
|
https://holometer.fnal.gov/GH_FFT.pdf
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Heinzel describes a flat-top window named "HFT90D" with formula: [2]_
|
||
|
|
||
|
.. math:: w_j = 1 - 1.942604 \cos(z) + 1.340318 \cos(2z)
|
||
|
- 0.440811 \cos(3z) + 0.043097 \cos(4z)
|
||
|
|
||
|
where
|
||
|
|
||
|
.. math:: z = \frac{2 \pi j}{N}, j = 0...N - 1
|
||
|
|
||
|
Since this uses the convention of starting at the origin, to reproduce the
|
||
|
window, we need to convert every other coefficient to a positive number:
|
||
|
|
||
|
>>> HFT90D = [1, 1.942604, 1.340318, 0.440811, 0.043097]
|
||
|
|
||
|
The paper states that the highest sidelobe is at -90.2 dB. Reproduce
|
||
|
Figure 42 by plotting the window and its frequency response, and confirm
|
||
|
the sidelobe level in red:
|
||
|
|
||
|
>>> from scipy.signal.windows import general_cosine
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = general_cosine(1000, HFT90D, sym=False)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("HFT90D window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 10000) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = np.abs(fftshift(A / abs(A).max()))
|
||
|
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-50/1000, 50/1000, -140, 0])
|
||
|
>>> plt.title("Frequency response of the HFT90D window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
>>> plt.axhline(-90.2, color='red')
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
fac = np.linspace(-np.pi, np.pi, M)
|
||
|
w = np.zeros(M)
|
||
|
for k in range(len(a)):
|
||
|
w += a[k] * np.cos(k * fac)
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def boxcar(M, sym=True):
|
||
|
"""Return a boxcar or rectangular window.
|
||
|
|
||
|
Also known as a rectangular window or Dirichlet window, this is equivalent
|
||
|
to no window at all.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
Whether the window is symmetric. (Has no effect for boxcar.)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.boxcar(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Boxcar window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the boxcar window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
w = np.ones(M, float)
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def triang(M, sym=True):
|
||
|
"""Return a triangular window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bartlett : A triangular window that touches zero
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.triang(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Triangular window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = np.abs(fftshift(A / abs(A).max()))
|
||
|
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the triangular window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
n = np.arange(1, (M + 1) // 2 + 1)
|
||
|
if M % 2 == 0:
|
||
|
w = (2 * n - 1.0) / M
|
||
|
w = np.r_[w, w[::-1]]
|
||
|
else:
|
||
|
w = 2 * n / (M + 1.0)
|
||
|
w = np.r_[w, w[-2::-1]]
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def parzen(M, sym=True):
|
||
|
"""Return a Parzen window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] E. Parzen, "Mathematical Considerations in the Estimation of
|
||
|
Spectra", Technometrics, Vol. 3, No. 2 (May, 1961), pp. 167-190
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.parzen(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Parzen window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Parzen window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
n = np.arange(-(M - 1) / 2.0, (M - 1) / 2.0 + 0.5, 1.0)
|
||
|
na = np.extract(n < -(M - 1) / 4.0, n)
|
||
|
nb = np.extract(abs(n) <= (M - 1) / 4.0, n)
|
||
|
wa = 2 * (1 - np.abs(na) / (M / 2.0)) ** 3.0
|
||
|
wb = (1 - 6 * (np.abs(nb) / (M / 2.0)) ** 2.0 +
|
||
|
6 * (np.abs(nb) / (M / 2.0)) ** 3.0)
|
||
|
w = np.r_[wa, wb, wa[::-1]]
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def bohman(M, sym=True):
|
||
|
"""Return a Bohman window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.bohman(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Bohman window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Bohman window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
fac = np.abs(np.linspace(-1, 1, M)[1:-1])
|
||
|
w = (1 - fac) * np.cos(np.pi * fac) + 1.0 / np.pi * np.sin(np.pi * fac)
|
||
|
w = np.r_[0, w, 0]
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def blackman(M, sym=True):
|
||
|
r"""
|
||
|
Return a Blackman window.
|
||
|
|
||
|
The Blackman window is a taper formed by using the first three terms of
|
||
|
a summation of cosines. It was designed to have close to the minimal
|
||
|
leakage possible. It is close to optimal, only slightly worse than a
|
||
|
Kaiser window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Blackman window is defined as
|
||
|
|
||
|
.. math:: w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)
|
||
|
|
||
|
The "exact Blackman" window was designed to null out the third and fourth
|
||
|
sidelobes, but has discontinuities at the boundaries, resulting in a
|
||
|
6 dB/oct fall-off. This window is an approximation of the "exact" window,
|
||
|
which does not null the sidelobes as well, but is smooth at the edges,
|
||
|
improving the fall-off rate to 18 dB/oct. [3]_
|
||
|
|
||
|
Most references to the Blackman window come from the signal processing
|
||
|
literature, where it is used as one of many windowing functions for
|
||
|
smoothing values. It is also known as an apodization (which means
|
||
|
"removing the foot", i.e. smoothing discontinuities at the beginning
|
||
|
and end of the sampled signal) or tapering function. It is known as a
|
||
|
"near optimal" tapering function, almost as good (by some measures)
|
||
|
as the Kaiser window.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
|
||
|
spectra, Dover Publications, New York.
|
||
|
.. [2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
|
||
|
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.
|
||
|
.. [3] Harris, Fredric J. (Jan 1978). "On the use of Windows for Harmonic
|
||
|
Analysis with the Discrete Fourier Transform". Proceedings of the
|
||
|
IEEE 66 (1): 51-83. :doi:`10.1109/PROC.1978.10837`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.blackman(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Blackman window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = np.abs(fftshift(A / abs(A).max()))
|
||
|
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Blackman window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
# Docstring adapted from NumPy's blackman function
|
||
|
return general_cosine(M, [0.42, 0.50, 0.08], sym)
|
||
|
|
||
|
|
||
|
def nuttall(M, sym=True):
|
||
|
"""Return a minimum 4-term Blackman-Harris window according to Nuttall.
|
||
|
|
||
|
This variation is called "Nuttall4c" by Heinzel. [2]_
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] A. Nuttall, "Some windows with very good sidelobe behavior," IEEE
|
||
|
Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
|
||
|
no. 1, pp. 84-91, Feb 1981. :doi:`10.1109/TASSP.1981.1163506`.
|
||
|
.. [2] Heinzel G. et al., "Spectrum and spectral density estimation by the
|
||
|
Discrete Fourier transform (DFT), including a comprehensive list of
|
||
|
window functions and some new flat-top windows", February 15, 2002
|
||
|
https://holometer.fnal.gov/GH_FFT.pdf
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.nuttall(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Nuttall window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Nuttall window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
return general_cosine(M, [0.3635819, 0.4891775, 0.1365995, 0.0106411], sym)
|
||
|
|
||
|
|
||
|
def blackmanharris(M, sym=True):
|
||
|
"""Return a minimum 4-term Blackman-Harris window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.blackmanharris(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Blackman-Harris window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Blackman-Harris window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
return general_cosine(M, [0.35875, 0.48829, 0.14128, 0.01168], sym)
|
||
|
|
||
|
|
||
|
def flattop(M, sym=True):
|
||
|
"""Return a flat top window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Flat top windows are used for taking accurate measurements of signal
|
||
|
amplitude in the frequency domain, with minimal scalloping error from the
|
||
|
center of a frequency bin to its edges, compared to others. This is a
|
||
|
5th-order cosine window, with the 5 terms optimized to make the main lobe
|
||
|
maximally flat. [1]_
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] D'Antona, Gabriele, and A. Ferrero, "Digital Signal Processing for
|
||
|
Measurement Systems", Springer Media, 2006, p. 70
|
||
|
:doi:`10.1007/0-387-28666-7`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.flattop(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Flat top window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the flat top window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
a = [0.21557895, 0.41663158, 0.277263158, 0.083578947, 0.006947368]
|
||
|
return general_cosine(M, a, sym)
|
||
|
|
||
|
|
||
|
def bartlett(M, sym=True):
|
||
|
r"""
|
||
|
Return a Bartlett window.
|
||
|
|
||
|
The Bartlett window is very similar to a triangular window, except
|
||
|
that the end points are at zero. It is often used in signal
|
||
|
processing for tapering a signal, without generating too much
|
||
|
ripple in the frequency domain.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The triangular window, with the first and last samples equal to zero
|
||
|
and the maximum value normalized to 1 (though the value 1 does not
|
||
|
appear if `M` is even and `sym` is True).
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
triang : A triangular window that does not touch zero at the ends
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Bartlett window is defined as
|
||
|
|
||
|
.. math:: w(n) = \frac{2}{M-1} \left(
|
||
|
\frac{M-1}{2} - \left|n - \frac{M-1}{2}\right|
|
||
|
\right)
|
||
|
|
||
|
Most references to the Bartlett window come from the signal
|
||
|
processing literature, where it is used as one of many windowing
|
||
|
functions for smoothing values. Note that convolution with this
|
||
|
window produces linear interpolation. It is also known as an
|
||
|
apodization (which means"removing the foot", i.e. smoothing
|
||
|
discontinuities at the beginning and end of the sampled signal) or
|
||
|
tapering function. The Fourier transform of the Bartlett is the product
|
||
|
of two sinc functions.
|
||
|
Note the excellent discussion in Kanasewich. [2]_
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
|
||
|
Biometrika 37, 1-16, 1950.
|
||
|
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
|
||
|
The University of Alberta Press, 1975, pp. 109-110.
|
||
|
.. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal
|
||
|
Processing", Prentice-Hall, 1999, pp. 468-471.
|
||
|
.. [4] Wikipedia, "Window function",
|
||
|
https://en.wikipedia.org/wiki/Window_function
|
||
|
.. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
|
||
|
"Numerical Recipes", Cambridge University Press, 1986, page 429.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.bartlett(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Bartlett window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Bartlett window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
# Docstring adapted from NumPy's bartlett function
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
n = np.arange(0, M)
|
||
|
w = np.where(np.less_equal(n, (M - 1) / 2.0),
|
||
|
2.0 * n / (M - 1), 2.0 - 2.0 * n / (M - 1))
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def hann(M, sym=True):
|
||
|
r"""
|
||
|
Return a Hann window.
|
||
|
|
||
|
The Hann window is a taper formed by using a raised cosine or sine-squared
|
||
|
with ends that touch zero.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Hann window is defined as
|
||
|
|
||
|
.. math:: w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi{n}}{M-1}\right)
|
||
|
\qquad 0 \leq n \leq M-1
|
||
|
|
||
|
The window was named for Julius von Hann, an Austrian meteorologist. It is
|
||
|
also known as the Cosine Bell. It is sometimes erroneously referred to as
|
||
|
the "Hanning" window, from the use of "hann" as a verb in the original
|
||
|
paper and confusion with the very similar Hamming window.
|
||
|
|
||
|
Most references to the Hann window come from the signal processing
|
||
|
literature, where it is used as one of many windowing functions for
|
||
|
smoothing values. It is also known as an apodization (which means
|
||
|
"removing the foot", i.e. smoothing discontinuities at the beginning
|
||
|
and end of the sampled signal) or tapering function.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
|
||
|
spectra, Dover Publications, New York.
|
||
|
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
|
||
|
The University of Alberta Press, 1975, pp. 106-108.
|
||
|
.. [3] Wikipedia, "Window function",
|
||
|
https://en.wikipedia.org/wiki/Window_function
|
||
|
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
|
||
|
"Numerical Recipes", Cambridge University Press, 1986, page 425.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.hann(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Hann window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = np.abs(fftshift(A / abs(A).max()))
|
||
|
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Hann window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
# Docstring adapted from NumPy's hanning function
|
||
|
return general_hamming(M, 0.5, sym)
|
||
|
|
||
|
|
||
|
@np.deprecate(new_name='scipy.signal.windows.hann')
|
||
|
def hanning(*args, **kwargs):
|
||
|
return hann(*args, **kwargs)
|
||
|
|
||
|
|
||
|
def tukey(M, alpha=0.5, sym=True):
|
||
|
r"""Return a Tukey window, also known as a tapered cosine window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
alpha : float, optional
|
||
|
Shape parameter of the Tukey window, representing the fraction of the
|
||
|
window inside the cosine tapered region.
|
||
|
If zero, the Tukey window is equivalent to a rectangular window.
|
||
|
If one, the Tukey window is equivalent to a Hann window.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Harris, Fredric J. (Jan 1978). "On the use of Windows for Harmonic
|
||
|
Analysis with the Discrete Fourier Transform". Proceedings of the
|
||
|
IEEE 66 (1): 51-83. :doi:`10.1109/PROC.1978.10837`
|
||
|
.. [2] Wikipedia, "Window function",
|
||
|
https://en.wikipedia.org/wiki/Window_function#Tukey_window
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.tukey(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Tukey window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
>>> plt.ylim([0, 1.1])
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Tukey window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
|
||
|
if alpha <= 0:
|
||
|
return np.ones(M, 'd')
|
||
|
elif alpha >= 1.0:
|
||
|
return hann(M, sym=sym)
|
||
|
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
n = np.arange(0, M)
|
||
|
width = int(np.floor(alpha*(M-1)/2.0))
|
||
|
n1 = n[0:width+1]
|
||
|
n2 = n[width+1:M-width-1]
|
||
|
n3 = n[M-width-1:]
|
||
|
|
||
|
w1 = 0.5 * (1 + np.cos(np.pi * (-1 + 2.0*n1/alpha/(M-1))))
|
||
|
w2 = np.ones(n2.shape)
|
||
|
w3 = 0.5 * (1 + np.cos(np.pi * (-2.0/alpha + 1 + 2.0*n3/alpha/(M-1))))
|
||
|
|
||
|
w = np.concatenate((w1, w2, w3))
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def barthann(M, sym=True):
|
||
|
"""Return a modified Bartlett-Hann window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.barthann(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Bartlett-Hann window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Bartlett-Hann window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
n = np.arange(0, M)
|
||
|
fac = np.abs(n / (M - 1.0) - 0.5)
|
||
|
w = 0.62 - 0.48 * fac + 0.38 * np.cos(2 * np.pi * fac)
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def general_hamming(M, alpha, sym=True):
|
||
|
r"""Return a generalized Hamming window.
|
||
|
|
||
|
The generalized Hamming window is constructed by multiplying a rectangular
|
||
|
window by one period of a cosine function [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
alpha : float
|
||
|
The window coefficient, :math:`\alpha`
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The generalized Hamming window is defined as
|
||
|
|
||
|
.. math:: w(n) = \alpha - \left(1 - \alpha\right) \cos\left(\frac{2\pi{n}}{M-1}\right)
|
||
|
\qquad 0 \leq n \leq M-1
|
||
|
|
||
|
Both the common Hamming window and Hann window are special cases of the
|
||
|
generalized Hamming window with :math:`\alpha` = 0.54 and :math:`\alpha` =
|
||
|
0.5, respectively [2]_.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hamming, hann
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The Sentinel-1A/B Instrument Processing Facility uses generalized Hamming
|
||
|
windows in the processing of spaceborne Synthetic Aperture Radar (SAR)
|
||
|
data [3]_. The facility uses various values for the :math:`\alpha`
|
||
|
parameter based on operating mode of the SAR instrument. Some common
|
||
|
:math:`\alpha` values include 0.75, 0.7 and 0.52 [4]_. As an example, we
|
||
|
plot these different windows.
|
||
|
|
||
|
>>> from scipy.signal.windows import general_hamming
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> fig1, spatial_plot = plt.subplots()
|
||
|
>>> spatial_plot.set_title("Generalized Hamming Windows")
|
||
|
>>> spatial_plot.set_ylabel("Amplitude")
|
||
|
>>> spatial_plot.set_xlabel("Sample")
|
||
|
|
||
|
>>> fig2, freq_plot = plt.subplots()
|
||
|
>>> freq_plot.set_title("Frequency Responses")
|
||
|
>>> freq_plot.set_ylabel("Normalized magnitude [dB]")
|
||
|
>>> freq_plot.set_xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
>>> for alpha in [0.75, 0.7, 0.52]:
|
||
|
... window = general_hamming(41, alpha)
|
||
|
... spatial_plot.plot(window, label="{:.2f}".format(alpha))
|
||
|
... A = fft(window, 2048) / (len(window)/2.0)
|
||
|
... freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
... response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
... freq_plot.plot(freq, response, label="{:.2f}".format(alpha))
|
||
|
>>> freq_plot.legend(loc="upper right")
|
||
|
>>> spatial_plot.legend(loc="upper right")
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] DSPRelated, "Generalized Hamming Window Family",
|
||
|
https://www.dsprelated.com/freebooks/sasp/Generalized_Hamming_Window_Family.html
|
||
|
.. [2] Wikipedia, "Window function",
|
||
|
https://en.wikipedia.org/wiki/Window_function
|
||
|
.. [3] Riccardo Piantanida ESA, "Sentinel-1 Level 1 Detailed Algorithm
|
||
|
Definition",
|
||
|
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Level-1-Detailed-Algorithm-Definition
|
||
|
.. [4] Matthieu Bourbigot ESA, "Sentinel-1 Product Definition",
|
||
|
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition
|
||
|
"""
|
||
|
return general_cosine(M, [alpha, 1. - alpha], sym)
|
||
|
|
||
|
|
||
|
def hamming(M, sym=True):
|
||
|
r"""Return a Hamming window.
|
||
|
|
||
|
The Hamming window is a taper formed by using a raised cosine with
|
||
|
non-zero endpoints, optimized to minimize the nearest side lobe.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Hamming window is defined as
|
||
|
|
||
|
.. math:: w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi{n}}{M-1}\right)
|
||
|
\qquad 0 \leq n \leq M-1
|
||
|
|
||
|
The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and
|
||
|
is described in Blackman and Tukey. It was recommended for smoothing the
|
||
|
truncated autocovariance function in the time domain.
|
||
|
Most references to the Hamming window come from the signal processing
|
||
|
literature, where it is used as one of many windowing functions for
|
||
|
smoothing values. It is also known as an apodization (which means
|
||
|
"removing the foot", i.e. smoothing discontinuities at the beginning
|
||
|
and end of the sampled signal) or tapering function.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
|
||
|
spectra, Dover Publications, New York.
|
||
|
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
|
||
|
University of Alberta Press, 1975, pp. 109-110.
|
||
|
.. [3] Wikipedia, "Window function",
|
||
|
https://en.wikipedia.org/wiki/Window_function
|
||
|
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
|
||
|
"Numerical Recipes", Cambridge University Press, 1986, page 425.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.hamming(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Hamming window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Hamming window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
# Docstring adapted from NumPy's hamming function
|
||
|
return general_hamming(M, 0.54, sym)
|
||
|
|
||
|
|
||
|
def kaiser(M, beta, sym=True):
|
||
|
r"""Return a Kaiser window.
|
||
|
|
||
|
The Kaiser window is a taper formed by using a Bessel function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
beta : float
|
||
|
Shape parameter, determines trade-off between main-lobe width and
|
||
|
side lobe level. As beta gets large, the window narrows.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Kaiser window is defined as
|
||
|
|
||
|
.. math:: w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}}
|
||
|
\right)/I_0(\beta)
|
||
|
|
||
|
with
|
||
|
|
||
|
.. math:: \quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2},
|
||
|
|
||
|
where :math:`I_0` is the modified zeroth-order Bessel function.
|
||
|
|
||
|
The Kaiser was named for Jim Kaiser, who discovered a simple approximation
|
||
|
to the DPSS window based on Bessel functions.
|
||
|
The Kaiser window is a very good approximation to the Digital Prolate
|
||
|
Spheroidal Sequence, or Slepian window, which is the transform which
|
||
|
maximizes the energy in the main lobe of the window relative to total
|
||
|
energy.
|
||
|
|
||
|
The Kaiser can approximate other windows by varying the beta parameter.
|
||
|
(Some literature uses alpha = beta/pi.) [4]_
|
||
|
|
||
|
==== =======================
|
||
|
beta Window shape
|
||
|
==== =======================
|
||
|
0 Rectangular
|
||
|
5 Similar to a Hamming
|
||
|
6 Similar to a Hann
|
||
|
8.6 Similar to a Blackman
|
||
|
==== =======================
|
||
|
|
||
|
A beta value of 14 is probably a good starting point. Note that as beta
|
||
|
gets large, the window narrows, and so the number of samples needs to be
|
||
|
large enough to sample the increasingly narrow spike, otherwise NaNs will
|
||
|
be returned.
|
||
|
|
||
|
Most references to the Kaiser window come from the signal processing
|
||
|
literature, where it is used as one of many windowing functions for
|
||
|
smoothing values. It is also known as an apodization (which means
|
||
|
"removing the foot", i.e. smoothing discontinuities at the beginning
|
||
|
and end of the sampled signal) or tapering function.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by
|
||
|
digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
|
||
|
John Wiley and Sons, New York, (1966).
|
||
|
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
|
||
|
University of Alberta Press, 1975, pp. 177-178.
|
||
|
.. [3] Wikipedia, "Window function",
|
||
|
https://en.wikipedia.org/wiki/Window_function
|
||
|
.. [4] F. J. Harris, "On the use of windows for harmonic analysis with the
|
||
|
discrete Fourier transform," Proceedings of the IEEE, vol. 66,
|
||
|
no. 1, pp. 51-83, Jan. 1978. :doi:`10.1109/PROC.1978.10837`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.kaiser(51, beta=14)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title(r"Kaiser window ($\beta$=14)")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title(r"Frequency response of the Kaiser window ($\beta$=14)")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
# Docstring adapted from NumPy's kaiser function
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
n = np.arange(0, M)
|
||
|
alpha = (M - 1) / 2.0
|
||
|
w = (special.i0(beta * np.sqrt(1 - ((n - alpha) / alpha) ** 2.0)) /
|
||
|
special.i0(beta))
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def gaussian(M, std, sym=True):
|
||
|
r"""Return a Gaussian window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
std : float
|
||
|
The standard deviation, sigma.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Gaussian window is defined as
|
||
|
|
||
|
.. math:: w(n) = e^{ -\frac{1}{2}\left(\frac{n}{\sigma}\right)^2 }
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.gaussian(51, std=7)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title(r"Gaussian window ($\sigma$=7)")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title(r"Frequency response of the Gaussian window ($\sigma$=7)")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
n = np.arange(0, M) - (M - 1.0) / 2.0
|
||
|
sig2 = 2 * std * std
|
||
|
w = np.exp(-n ** 2 / sig2)
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def general_gaussian(M, p, sig, sym=True):
|
||
|
r"""Return a window with a generalized Gaussian shape.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
p : float
|
||
|
Shape parameter. p = 1 is identical to `gaussian`, p = 0.5 is
|
||
|
the same shape as the Laplace distribution.
|
||
|
sig : float
|
||
|
The standard deviation, sigma.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The generalized Gaussian window is defined as
|
||
|
|
||
|
.. math:: w(n) = e^{ -\frac{1}{2}\left|\frac{n}{\sigma}\right|^{2p} }
|
||
|
|
||
|
the half-power point is at
|
||
|
|
||
|
.. math:: (2 \log(2))^{1/(2 p)} \sigma
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.general_gaussian(51, p=1.5, sig=7)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title(r"Generalized Gaussian window (p=1.5, $\sigma$=7)")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title(r"Freq. resp. of the gen. Gaussian "
|
||
|
... r"window (p=1.5, $\sigma$=7)")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
n = np.arange(0, M) - (M - 1.0) / 2.0
|
||
|
w = np.exp(-0.5 * np.abs(n / sig) ** (2 * p))
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
# `chebwin` contributed by Kumar Appaiah.
|
||
|
def chebwin(M, at, sym=True):
|
||
|
r"""Return a Dolph-Chebyshev window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
at : float
|
||
|
Attenuation (in dB).
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value always normalized to 1
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This window optimizes for the narrowest main lobe width for a given order
|
||
|
`M` and sidelobe equiripple attenuation `at`, using Chebyshev
|
||
|
polynomials. It was originally developed by Dolph to optimize the
|
||
|
directionality of radio antenna arrays.
|
||
|
|
||
|
Unlike most windows, the Dolph-Chebyshev is defined in terms of its
|
||
|
frequency response:
|
||
|
|
||
|
.. math:: W(k) = \frac
|
||
|
{\cos\{M \cos^{-1}[\beta \cos(\frac{\pi k}{M})]\}}
|
||
|
{\cosh[M \cosh^{-1}(\beta)]}
|
||
|
|
||
|
where
|
||
|
|
||
|
.. math:: \beta = \cosh \left [\frac{1}{M}
|
||
|
\cosh^{-1}(10^\frac{A}{20}) \right ]
|
||
|
|
||
|
and 0 <= abs(k) <= M-1. A is the attenuation in decibels (`at`).
|
||
|
|
||
|
The time domain window is then generated using the IFFT, so
|
||
|
power-of-two `M` are the fastest to generate, and prime number `M` are
|
||
|
the slowest.
|
||
|
|
||
|
The equiripple condition in the frequency domain creates impulses in the
|
||
|
time domain, which appear at the ends of the window.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] C. Dolph, "A current distribution for broadside arrays which
|
||
|
optimizes the relationship between beam width and side-lobe level",
|
||
|
Proceedings of the IEEE, Vol. 34, Issue 6
|
||
|
.. [2] Peter Lynch, "The Dolph-Chebyshev Window: A Simple Optimal Filter",
|
||
|
American Meteorological Society (April 1997)
|
||
|
http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf
|
||
|
.. [3] F. J. Harris, "On the use of windows for harmonic analysis with the
|
||
|
discrete Fourier transforms", Proceedings of the IEEE, Vol. 66,
|
||
|
No. 1, January 1978
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.chebwin(51, at=100)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Dolph-Chebyshev window (100 dB)")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
if np.abs(at) < 45:
|
||
|
warnings.warn("This window is not suitable for spectral analysis "
|
||
|
"for attenuation values lower than about 45dB because "
|
||
|
"the equivalent noise bandwidth of a Chebyshev window "
|
||
|
"does not grow monotonically with increasing sidelobe "
|
||
|
"attenuation when the attenuation is smaller than "
|
||
|
"about 45 dB.")
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
# compute the parameter beta
|
||
|
order = M - 1.0
|
||
|
beta = np.cosh(1.0 / order * np.arccosh(10 ** (np.abs(at) / 20.)))
|
||
|
k = np.r_[0:M] * 1.0
|
||
|
x = beta * np.cos(np.pi * k / M)
|
||
|
# Find the window's DFT coefficients
|
||
|
# Use analytic definition of Chebyshev polynomial instead of expansion
|
||
|
# from scipy.special. Using the expansion in scipy.special leads to errors.
|
||
|
p = np.zeros(x.shape)
|
||
|
p[x > 1] = np.cosh(order * np.arccosh(x[x > 1]))
|
||
|
p[x < -1] = (2 * (M % 2) - 1) * np.cosh(order * np.arccosh(-x[x < -1]))
|
||
|
p[np.abs(x) <= 1] = np.cos(order * np.arccos(x[np.abs(x) <= 1]))
|
||
|
|
||
|
# Appropriate IDFT and filling up
|
||
|
# depending on even/odd M
|
||
|
if M % 2:
|
||
|
w = np.real(sp_fft.fft(p))
|
||
|
n = (M + 1) // 2
|
||
|
w = w[:n]
|
||
|
w = np.concatenate((w[n - 1:0:-1], w))
|
||
|
else:
|
||
|
p = p * np.exp(1.j * np.pi / M * np.r_[0:M])
|
||
|
w = np.real(sp_fft.fft(p))
|
||
|
n = M // 2 + 1
|
||
|
w = np.concatenate((w[n - 1:0:-1], w[1:n]))
|
||
|
w = w / max(w)
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def slepian(M, width, sym=True):
|
||
|
"""Return a digital Slepian (DPSS) window.
|
||
|
|
||
|
Used to maximize the energy concentration in the main lobe. Also called
|
||
|
the digital prolate spheroidal sequence (DPSS).
|
||
|
|
||
|
.. note:: Deprecated in SciPy 1.1.
|
||
|
`slepian` will be removed in a future version of SciPy, it is
|
||
|
replaced by `dpss`, which uses the standard definition of a
|
||
|
digital Slepian window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
width : float
|
||
|
Bandwidth
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value always normalized to 1
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
dpss
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] D. Slepian & H. O. Pollak: "Prolate spheroidal wave functions,
|
||
|
Fourier analysis and uncertainty-I," Bell Syst. Tech. J., vol.40,
|
||
|
pp.43-63, 1961. https://archive.org/details/bstj40-1-43
|
||
|
.. [2] H. J. Landau & H. O. Pollak: "Prolate spheroidal wave functions,
|
||
|
Fourier analysis and uncertainty-II," Bell Syst. Tech. J. , vol.40,
|
||
|
pp.65-83, 1961. https://archive.org/details/bstj40-1-65
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.slepian(51, width=0.3)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Slepian (DPSS) window (BW=0.3)")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the Slepian window (BW=0.3)")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
"""
|
||
|
warnings.warn('slepian is deprecated and will be removed in a future '
|
||
|
'version, use dpss instead', DeprecationWarning)
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
# our width is the full bandwidth
|
||
|
width = width / 2
|
||
|
# to match the old version
|
||
|
width = width / 2
|
||
|
m = np.arange(M, dtype='d')
|
||
|
H = np.zeros((2, M))
|
||
|
H[0, 1:] = m[1:] * (M - m[1:]) / 2
|
||
|
H[1, :] = ((M - 1 - 2 * m) / 2)**2 * np.cos(2 * np.pi * width)
|
||
|
|
||
|
_, win = linalg.eig_banded(H, select='i', select_range=(M-1, M-1))
|
||
|
win = win.ravel() / win.max()
|
||
|
|
||
|
return _truncate(win, needs_trunc)
|
||
|
|
||
|
|
||
|
def cosine(M, sym=True):
|
||
|
"""Return a window with a simple cosine shape.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.13.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> window = signal.cosine(51)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Cosine window")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -120, 0])
|
||
|
>>> plt.title("Frequency response of the cosine window")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
w = np.sin(np.pi / M * (np.arange(0, M) + .5))
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def exponential(M, center=None, tau=1., sym=True):
|
||
|
r"""Return an exponential (or Poisson) window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Number of points in the output window. If zero or less, an empty
|
||
|
array is returned.
|
||
|
center : float, optional
|
||
|
Parameter defining the center location of the window function.
|
||
|
The default value if not given is ``center = (M-1) / 2``. This
|
||
|
parameter must take its default value for symmetric windows.
|
||
|
tau : float, optional
|
||
|
Parameter defining the decay. For ``center = 0`` use
|
||
|
``tau = -(M-1) / ln(x)`` if ``x`` is the fraction of the window
|
||
|
remaining at the end.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
w : ndarray
|
||
|
The window, with the maximum value normalized to 1 (though the value 1
|
||
|
does not appear if `M` is even and `sym` is True).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The Exponential window is defined as
|
||
|
|
||
|
.. math:: w(n) = e^{-|n-center| / \tau}
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
S. Gade and H. Herlufsen, "Windows to FFT analysis (Part I)",
|
||
|
Technical Review 3, Bruel & Kjaer, 1987.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Plot the symmetric window and its frequency response:
|
||
|
|
||
|
>>> from scipy import signal
|
||
|
>>> from scipy.fft import fft, fftshift
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> M = 51
|
||
|
>>> tau = 3.0
|
||
|
>>> window = signal.exponential(M, tau=tau)
|
||
|
>>> plt.plot(window)
|
||
|
>>> plt.title("Exponential Window (tau=3.0)")
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
|
||
|
>>> plt.figure()
|
||
|
>>> A = fft(window, 2048) / (len(window)/2.0)
|
||
|
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
||
|
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
||
|
>>> plt.plot(freq, response)
|
||
|
>>> plt.axis([-0.5, 0.5, -35, 0])
|
||
|
>>> plt.title("Frequency response of the Exponential window (tau=3.0)")
|
||
|
>>> plt.ylabel("Normalized magnitude [dB]")
|
||
|
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
||
|
|
||
|
This function can also generate non-symmetric windows:
|
||
|
|
||
|
>>> tau2 = -(M-1) / np.log(0.01)
|
||
|
>>> window2 = signal.exponential(M, 0, tau2, False)
|
||
|
>>> plt.figure()
|
||
|
>>> plt.plot(window2)
|
||
|
>>> plt.ylabel("Amplitude")
|
||
|
>>> plt.xlabel("Sample")
|
||
|
"""
|
||
|
if sym and center is not None:
|
||
|
raise ValueError("If sym==True, center must be None.")
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
|
||
|
if center is None:
|
||
|
center = (M-1) / 2
|
||
|
|
||
|
n = np.arange(0, M)
|
||
|
w = np.exp(-np.abs(n-center) / tau)
|
||
|
|
||
|
return _truncate(w, needs_trunc)
|
||
|
|
||
|
|
||
|
def dpss(M, NW, Kmax=None, sym=True, norm=None, return_ratios=False):
|
||
|
"""
|
||
|
Compute the Discrete Prolate Spheroidal Sequences (DPSS).
|
||
|
|
||
|
DPSS (or Slepian sequences) are often used in multitaper power spectral
|
||
|
density estimation (see [1]_). The first window in the sequence can be
|
||
|
used to maximize the energy concentration in the main lobe, and is also
|
||
|
called the Slepian window.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
M : int
|
||
|
Window length.
|
||
|
NW : float
|
||
|
Standardized half bandwidth corresponding to ``2*NW = BW/f0 = BW*N*dt``
|
||
|
where ``dt`` is taken as 1.
|
||
|
Kmax : int | None, optional
|
||
|
Number of DPSS windows to return (orders ``0`` through ``Kmax-1``).
|
||
|
If None (default), return only a single window of shape ``(M,)``
|
||
|
instead of an array of windows of shape ``(Kmax, M)``.
|
||
|
sym : bool, optional
|
||
|
When True (default), generates a symmetric window, for use in filter
|
||
|
design.
|
||
|
When False, generates a periodic window, for use in spectral analysis.
|
||
|
norm : {2, 'approximate', 'subsample'} | None, optional
|
||
|
If 'approximate' or 'subsample', then the windows are normalized by the
|
||
|
maximum, and a correction scale-factor for even-length windows
|
||
|
is applied either using ``M**2/(M**2+NW)`` ("approximate") or
|
||
|
a FFT-based subsample shift ("subsample"), see Notes for details.
|
||
|
If None, then "approximate" is used when ``Kmax=None`` and 2 otherwise
|
||
|
(which uses the l2 norm).
|
||
|
return_ratios : bool, optional
|
||
|
If True, also return the concentration ratios in addition to the
|
||
|
windows.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
v : ndarray, shape (Kmax, N) or (N,)
|
||
|
The DPSS windows. Will be 1D if `Kmax` is None.
|
||
|
r : ndarray, shape (Kmax,) or float, optional
|
||
|
The concentration ratios for the windows. Only returned if
|
||
|
`return_ratios` evaluates to True. Will be 0D if `Kmax` is None.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This computation uses the tridiagonal eigenvector formulation given
|
||
|
in [2]_.
|
||
|
|
||
|
The default normalization for ``Kmax=None``, i.e. window-generation mode,
|
||
|
simply using the l-infinity norm would create a window with two unity
|
||
|
values, which creates slight normalization differences between even and odd
|
||
|
orders. The approximate correction of ``M**2/float(M**2+NW)`` for even
|
||
|
sample numbers is used to counteract this effect (see Examples below).
|
||
|
|
||
|
For very long signals (e.g., 1e6 elements), it can be useful to compute
|
||
|
windows orders of magnitude shorter and use interpolation (e.g.,
|
||
|
`scipy.interpolate.interp1d`) to obtain tapers of length `M`,
|
||
|
but this in general will not preserve orthogonality between the tapers.
|
||
|
|
||
|
.. versionadded:: 1.1
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Percival DB, Walden WT. Spectral Analysis for Physical Applications:
|
||
|
Multitaper and Conventional Univariate Techniques.
|
||
|
Cambridge University Press; 1993.
|
||
|
.. [2] Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and
|
||
|
uncertainty V: The discrete case. Bell System Technical Journal,
|
||
|
Volume 57 (1978), 1371430.
|
||
|
.. [3] Kaiser, JF, Schafer RW. On the Use of the I0-Sinh Window for
|
||
|
Spectrum Analysis. IEEE Transactions on Acoustics, Speech and
|
||
|
Signal Processing. ASSP-28 (1): 105-107; 1980.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
We can compare the window to `kaiser`, which was invented as an alternative
|
||
|
that was easier to calculate [3]_ (example adapted from
|
||
|
`here <https://ccrma.stanford.edu/~jos/sasp/Kaiser_DPSS_Windows_Compared.html>`_):
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.signal import windows, freqz
|
||
|
>>> N = 51
|
||
|
>>> fig, axes = plt.subplots(3, 2, figsize=(5, 7))
|
||
|
>>> for ai, alpha in enumerate((1, 3, 5)):
|
||
|
... win_dpss = windows.dpss(N, alpha)
|
||
|
... beta = alpha*np.pi
|
||
|
... win_kaiser = windows.kaiser(N, beta)
|
||
|
... for win, c in ((win_dpss, 'k'), (win_kaiser, 'r')):
|
||
|
... win /= win.sum()
|
||
|
... axes[ai, 0].plot(win, color=c, lw=1.)
|
||
|
... axes[ai, 0].set(xlim=[0, N-1], title=r'$\\alpha$ = %s' % alpha,
|
||
|
... ylabel='Amplitude')
|
||
|
... w, h = freqz(win)
|
||
|
... axes[ai, 1].plot(w, 20 * np.log10(np.abs(h)), color=c, lw=1.)
|
||
|
... axes[ai, 1].set(xlim=[0, np.pi],
|
||
|
... title=r'$\\beta$ = %0.2f' % beta,
|
||
|
... ylabel='Magnitude (dB)')
|
||
|
>>> for ax in axes.ravel():
|
||
|
... ax.grid(True)
|
||
|
>>> axes[2, 1].legend(['DPSS', 'Kaiser'])
|
||
|
>>> fig.tight_layout()
|
||
|
>>> plt.show()
|
||
|
|
||
|
And here are examples of the first four windows, along with their
|
||
|
concentration ratios:
|
||
|
|
||
|
>>> M = 512
|
||
|
>>> NW = 2.5
|
||
|
>>> win, eigvals = windows.dpss(M, NW, 4, return_ratios=True)
|
||
|
>>> fig, ax = plt.subplots(1)
|
||
|
>>> ax.plot(win.T, linewidth=1.)
|
||
|
>>> ax.set(xlim=[0, M-1], ylim=[-0.1, 0.1], xlabel='Samples',
|
||
|
... title='DPSS, M=%d, NW=%0.1f' % (M, NW))
|
||
|
>>> ax.legend(['win[%d] (%0.4f)' % (ii, ratio)
|
||
|
... for ii, ratio in enumerate(eigvals)])
|
||
|
>>> fig.tight_layout()
|
||
|
>>> plt.show()
|
||
|
|
||
|
Using a standard :math:`l_{\\infty}` norm would produce two unity values
|
||
|
for even `M`, but only one unity value for odd `M`. This produces uneven
|
||
|
window power that can be counteracted by the approximate correction
|
||
|
``M**2/float(M**2+NW)``, which can be selected by using
|
||
|
``norm='approximate'`` (which is the same as ``norm=None`` when
|
||
|
``Kmax=None``, as is the case here). Alternatively, the slower
|
||
|
``norm='subsample'`` can be used, which uses subsample shifting in the
|
||
|
frequency domain (FFT) to compute the correction:
|
||
|
|
||
|
>>> Ms = np.arange(1, 41)
|
||
|
>>> factors = (50, 20, 10, 5, 2.0001)
|
||
|
>>> energy = np.empty((3, len(Ms), len(factors)))
|
||
|
>>> for mi, M in enumerate(Ms):
|
||
|
... for fi, factor in enumerate(factors):
|
||
|
... NW = M / float(factor)
|
||
|
... # Corrected using empirical approximation (default)
|
||
|
... win = windows.dpss(M, NW)
|
||
|
... energy[0, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
|
||
|
... # Corrected using subsample shifting
|
||
|
... win = windows.dpss(M, NW, norm='subsample')
|
||
|
... energy[1, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
|
||
|
... # Uncorrected (using l-infinity norm)
|
||
|
... win /= win.max()
|
||
|
... energy[2, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
|
||
|
>>> fig, ax = plt.subplots(1)
|
||
|
>>> hs = ax.plot(Ms, energy[2], '-o', markersize=4,
|
||
|
... markeredgecolor='none')
|
||
|
>>> leg = [hs[-1]]
|
||
|
>>> for hi, hh in enumerate(hs):
|
||
|
... h1 = ax.plot(Ms, energy[0, :, hi], '-o', markersize=4,
|
||
|
... color=hh.get_color(), markeredgecolor='none',
|
||
|
... alpha=0.66)
|
||
|
... h2 = ax.plot(Ms, energy[1, :, hi], '-o', markersize=4,
|
||
|
... color=hh.get_color(), markeredgecolor='none',
|
||
|
... alpha=0.33)
|
||
|
... if hi == len(hs) - 1:
|
||
|
... leg.insert(0, h1[0])
|
||
|
... leg.insert(0, h2[0])
|
||
|
>>> ax.set(xlabel='M (samples)', ylabel=r'Power / $\\sqrt{M}$')
|
||
|
>>> ax.legend(leg, ['Uncorrected', r'Corrected: $\\frac{M^2}{M^2+NW}$',
|
||
|
... 'Corrected (subsample)'])
|
||
|
>>> fig.tight_layout()
|
||
|
|
||
|
""" # noqa: E501
|
||
|
if _len_guards(M):
|
||
|
return np.ones(M)
|
||
|
if norm is None:
|
||
|
norm = 'approximate' if Kmax is None else 2
|
||
|
known_norms = (2, 'approximate', 'subsample')
|
||
|
if norm not in known_norms:
|
||
|
raise ValueError('norm must be one of %s, got %s'
|
||
|
% (known_norms, norm))
|
||
|
if Kmax is None:
|
||
|
singleton = True
|
||
|
Kmax = 1
|
||
|
else:
|
||
|
singleton = False
|
||
|
Kmax = operator.index(Kmax)
|
||
|
if not 0 < Kmax <= M:
|
||
|
raise ValueError('Kmax must be greater than 0 and less than M')
|
||
|
if NW >= M/2.:
|
||
|
raise ValueError('NW must be less than M/2.')
|
||
|
if NW <= 0:
|
||
|
raise ValueError('NW must be positive')
|
||
|
M, needs_trunc = _extend(M, sym)
|
||
|
W = float(NW) / M
|
||
|
nidx = np.arange(M)
|
||
|
|
||
|
# Here we want to set up an optimization problem to find a sequence
|
||
|
# whose energy is maximally concentrated within band [-W,W].
|
||
|
# Thus, the measure lambda(T,W) is the ratio between the energy within
|
||
|
# that band, and the total energy. This leads to the eigen-system
|
||
|
# (A - (l1)I)v = 0, where the eigenvector corresponding to the largest
|
||
|
# eigenvalue is the sequence with maximally concentrated energy. The
|
||
|
# collection of eigenvectors of this system are called Slepian
|
||
|
# sequences, or discrete prolate spheroidal sequences (DPSS). Only the
|
||
|
# first K, K = 2NW/dt orders of DPSS will exhibit good spectral
|
||
|
# concentration
|
||
|
# [see https://en.wikipedia.org/wiki/Spectral_concentration_problem]
|
||
|
|
||
|
# Here we set up an alternative symmetric tri-diagonal eigenvalue
|
||
|
# problem such that
|
||
|
# (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1)
|
||
|
# the main diagonal = ([N-1-2*t]/2)**2 cos(2PIW), t=[0,1,2,...,N-1]
|
||
|
# and the first off-diagonal = t(N-t)/2, t=[1,2,...,N-1]
|
||
|
# [see Percival and Walden, 1993]
|
||
|
d = ((M - 1 - 2 * nidx) / 2.) ** 2 * np.cos(2 * np.pi * W)
|
||
|
e = nidx[1:] * (M - nidx[1:]) / 2.
|
||
|
|
||
|
# only calculate the highest Kmax eigenvalues
|
||
|
w, windows = linalg.eigh_tridiagonal(
|
||
|
d, e, select='i', select_range=(M - Kmax, M - 1))
|
||
|
w = w[::-1]
|
||
|
windows = windows[:, ::-1].T
|
||
|
|
||
|
# By convention (Percival and Walden, 1993 pg 379)
|
||
|
# * symmetric tapers (k=0,2,4,...) should have a positive average.
|
||
|
fix_even = (windows[::2].sum(axis=1) < 0)
|
||
|
for i, f in enumerate(fix_even):
|
||
|
if f:
|
||
|
windows[2 * i] *= -1
|
||
|
# * antisymmetric tapers should begin with a positive lobe
|
||
|
# (this depends on the definition of "lobe", here we'll take the first
|
||
|
# point above the numerical noise, which should be good enough for
|
||
|
# sufficiently smooth functions, and more robust than relying on an
|
||
|
# algorithm that uses max(abs(w)), which is susceptible to numerical
|
||
|
# noise problems)
|
||
|
thresh = max(1e-7, 1. / M)
|
||
|
for i, w in enumerate(windows[1::2]):
|
||
|
if w[w * w > thresh][0] < 0:
|
||
|
windows[2 * i + 1] *= -1
|
||
|
|
||
|
# Now find the eigenvalues of the original spectral concentration problem
|
||
|
# Use the autocorr sequence technique from Percival and Walden, 1993 pg 390
|
||
|
if return_ratios:
|
||
|
dpss_rxx = _fftautocorr(windows)
|
||
|
r = 4 * W * np.sinc(2 * W * nidx)
|
||
|
r[0] = 2 * W
|
||
|
ratios = np.dot(dpss_rxx, r)
|
||
|
if singleton:
|
||
|
ratios = ratios[0]
|
||
|
# Deal with sym and Kmax=None
|
||
|
if norm != 2:
|
||
|
windows /= windows.max()
|
||
|
if M % 2 == 0:
|
||
|
if norm == 'approximate':
|
||
|
correction = M**2 / float(M**2 + NW)
|
||
|
else:
|
||
|
s = sp_fft.rfft(windows[0])
|
||
|
shift = -(1 - 1./M) * np.arange(1, M//2 + 1)
|
||
|
s[1:] *= 2 * np.exp(-1j * np.pi * shift)
|
||
|
correction = M / s.real.sum()
|
||
|
windows *= correction
|
||
|
# else we're already l2 normed, so do nothing
|
||
|
if needs_trunc:
|
||
|
windows = windows[:, :-1]
|
||
|
if singleton:
|
||
|
windows = windows[0]
|
||
|
return (windows, ratios) if return_ratios else windows
|
||
|
|
||
|
|
||
|
def _fftautocorr(x):
|
||
|
"""Compute the autocorrelation of a real array and crop the result."""
|
||
|
N = x.shape[-1]
|
||
|
use_N = sp_fft.next_fast_len(2*N-1)
|
||
|
x_fft = sp_fft.rfft(x, use_N, axis=-1)
|
||
|
cxy = sp_fft.irfft(x_fft * x_fft.conj(), n=use_N)[:, :N]
|
||
|
# Or equivalently (but in most cases slower):
|
||
|
# cxy = np.array([np.convolve(xx, yy[::-1], mode='full')
|
||
|
# for xx, yy in zip(x, x)])[:, N-1:2*N-1]
|
||
|
return cxy
|
||
|
|
||
|
|
||
|
_win_equiv_raw = {
|
||
|
('barthann', 'brthan', 'bth'): (barthann, False),
|
||
|
('bartlett', 'bart', 'brt'): (bartlett, False),
|
||
|
('blackman', 'black', 'blk'): (blackman, False),
|
||
|
('blackmanharris', 'blackharr', 'bkh'): (blackmanharris, False),
|
||
|
('bohman', 'bman', 'bmn'): (bohman, False),
|
||
|
('boxcar', 'box', 'ones',
|
||
|
'rect', 'rectangular'): (boxcar, False),
|
||
|
('chebwin', 'cheb'): (chebwin, True),
|
||
|
('cosine', 'halfcosine'): (cosine, False),
|
||
|
('exponential', 'poisson'): (exponential, True),
|
||
|
('flattop', 'flat', 'flt'): (flattop, False),
|
||
|
('gaussian', 'gauss', 'gss'): (gaussian, True),
|
||
|
('general gaussian', 'general_gaussian',
|
||
|
'general gauss', 'general_gauss', 'ggs'): (general_gaussian, True),
|
||
|
('hamming', 'hamm', 'ham'): (hamming, False),
|
||
|
('hanning', 'hann', 'han'): (hann, False),
|
||
|
('kaiser', 'ksr'): (kaiser, True),
|
||
|
('nuttall', 'nutl', 'nut'): (nuttall, False),
|
||
|
('parzen', 'parz', 'par'): (parzen, False),
|
||
|
('slepian', 'slep', 'optimal', 'dpss', 'dss'): (slepian, True),
|
||
|
('triangle', 'triang', 'tri'): (triang, False),
|
||
|
('tukey', 'tuk'): (tukey, True),
|
||
|
}
|
||
|
|
||
|
# Fill dict with all valid window name strings
|
||
|
_win_equiv = {}
|
||
|
for k, v in _win_equiv_raw.items():
|
||
|
for key in k:
|
||
|
_win_equiv[key] = v[0]
|
||
|
|
||
|
# Keep track of which windows need additional parameters
|
||
|
_needs_param = set()
|
||
|
for k, v in _win_equiv_raw.items():
|
||
|
if v[1]:
|
||
|
_needs_param.update(k)
|
||
|
|
||
|
|
||
|
def get_window(window, Nx, fftbins=True):
|
||
|
"""
|
||
|
Return a window of a given length and type.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
window : string, float, or tuple
|
||
|
The type of window to create. See below for more details.
|
||
|
Nx : int
|
||
|
The number of samples in the window.
|
||
|
fftbins : bool, optional
|
||
|
If True (default), create a "periodic" window, ready to use with
|
||
|
`ifftshift` and be multiplied by the result of an FFT (see also
|
||
|
:func:`~scipy.fft.fftfreq`).
|
||
|
If False, create a "symmetric" window, for use in filter design.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
get_window : ndarray
|
||
|
Returns a window of length `Nx` and type `window`
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Window types:
|
||
|
|
||
|
- `~scipy.signal.windows.boxcar`
|
||
|
- `~scipy.signal.windows.triang`
|
||
|
- `~scipy.signal.windows.blackman`
|
||
|
- `~scipy.signal.windows.hamming`
|
||
|
- `~scipy.signal.windows.hann`
|
||
|
- `~scipy.signal.windows.bartlett`
|
||
|
- `~scipy.signal.windows.flattop`
|
||
|
- `~scipy.signal.windows.parzen`
|
||
|
- `~scipy.signal.windows.bohman`
|
||
|
- `~scipy.signal.windows.blackmanharris`
|
||
|
- `~scipy.signal.windows.nuttall`
|
||
|
- `~scipy.signal.windows.barthann`
|
||
|
- `~scipy.signal.windows.kaiser` (needs beta)
|
||
|
- `~scipy.signal.windows.gaussian` (needs standard deviation)
|
||
|
- `~scipy.signal.windows.general_gaussian` (needs power, width)
|
||
|
- `~scipy.signal.windows.slepian` (needs width)
|
||
|
- `~scipy.signal.windows.dpss` (needs normalized half-bandwidth)
|
||
|
- `~scipy.signal.windows.chebwin` (needs attenuation)
|
||
|
- `~scipy.signal.windows.exponential` (needs decay scale)
|
||
|
- `~scipy.signal.windows.tukey` (needs taper fraction)
|
||
|
|
||
|
If the window requires no parameters, then `window` can be a string.
|
||
|
|
||
|
If the window requires parameters, then `window` must be a tuple
|
||
|
with the first argument the string name of the window, and the next
|
||
|
arguments the needed parameters.
|
||
|
|
||
|
If `window` is a floating point number, it is interpreted as the beta
|
||
|
parameter of the `~scipy.signal.windows.kaiser` window.
|
||
|
|
||
|
Each of the window types listed above is also the name of
|
||
|
a function that can be called directly to create a window of
|
||
|
that type.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy import signal
|
||
|
>>> signal.get_window('triang', 7)
|
||
|
array([ 0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375])
|
||
|
>>> signal.get_window(('kaiser', 4.0), 9)
|
||
|
array([ 0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093,
|
||
|
0.97885093, 0.82160913, 0.56437221, 0.29425961])
|
||
|
>>> signal.get_window(4.0, 9)
|
||
|
array([ 0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093,
|
||
|
0.97885093, 0.82160913, 0.56437221, 0.29425961])
|
||
|
|
||
|
"""
|
||
|
sym = not fftbins
|
||
|
try:
|
||
|
beta = float(window)
|
||
|
except (TypeError, ValueError):
|
||
|
args = ()
|
||
|
if isinstance(window, tuple):
|
||
|
winstr = window[0]
|
||
|
if len(window) > 1:
|
||
|
args = window[1:]
|
||
|
elif isinstance(window, str):
|
||
|
if window in _needs_param:
|
||
|
raise ValueError("The '" + window + "' window needs one or "
|
||
|
"more parameters -- pass a tuple.")
|
||
|
else:
|
||
|
winstr = window
|
||
|
else:
|
||
|
raise ValueError("%s as window type is not supported." %
|
||
|
str(type(window)))
|
||
|
|
||
|
try:
|
||
|
winfunc = _win_equiv[winstr]
|
||
|
except KeyError:
|
||
|
raise ValueError("Unknown window type.")
|
||
|
|
||
|
params = (Nx,) + args + (sym,)
|
||
|
else:
|
||
|
winfunc = kaiser
|
||
|
params = (Nx, beta, sym)
|
||
|
|
||
|
return winfunc(*params)
|