Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
446 lines
15 KiB
446 lines
15 KiB
4 years ago
|
""" Unit tests for nonlinear solvers
|
||
|
Author: Ondrej Certik
|
||
|
May 2007
|
||
|
"""
|
||
|
from numpy.testing import assert_
|
||
|
import pytest
|
||
|
|
||
|
from scipy.optimize import nonlin, root
|
||
|
from numpy import diag, dot
|
||
|
from numpy.linalg import inv
|
||
|
import numpy as np
|
||
|
|
||
|
from .test_minpack import pressure_network
|
||
|
|
||
|
SOLVERS = {'anderson': nonlin.anderson, 'diagbroyden': nonlin.diagbroyden,
|
||
|
'linearmixing': nonlin.linearmixing, 'excitingmixing': nonlin.excitingmixing,
|
||
|
'broyden1': nonlin.broyden1, 'broyden2': nonlin.broyden2,
|
||
|
'krylov': nonlin.newton_krylov}
|
||
|
MUST_WORK = {'anderson': nonlin.anderson, 'broyden1': nonlin.broyden1,
|
||
|
'broyden2': nonlin.broyden2, 'krylov': nonlin.newton_krylov}
|
||
|
|
||
|
#-------------------------------------------------------------------------------
|
||
|
# Test problems
|
||
|
#-------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def F(x):
|
||
|
x = np.asarray(x).T
|
||
|
d = diag([3,2,1.5,1,0.5])
|
||
|
c = 0.01
|
||
|
f = -d @ x - c * float(x.T @ x) * x
|
||
|
return f
|
||
|
|
||
|
|
||
|
F.xin = [1,1,1,1,1]
|
||
|
F.KNOWN_BAD = {}
|
||
|
|
||
|
|
||
|
def F2(x):
|
||
|
return x
|
||
|
|
||
|
|
||
|
F2.xin = [1,2,3,4,5,6]
|
||
|
F2.KNOWN_BAD = {'linearmixing': nonlin.linearmixing,
|
||
|
'excitingmixing': nonlin.excitingmixing}
|
||
|
|
||
|
|
||
|
def F2_lucky(x):
|
||
|
return x
|
||
|
|
||
|
|
||
|
F2_lucky.xin = [0,0,0,0,0,0]
|
||
|
F2_lucky.KNOWN_BAD = {}
|
||
|
|
||
|
|
||
|
def F3(x):
|
||
|
A = np.array([[-2, 1, 0.], [1, -2, 1], [0, 1, -2]])
|
||
|
b = np.array([1, 2, 3.])
|
||
|
return A @ x - b
|
||
|
|
||
|
|
||
|
F3.xin = [1,2,3]
|
||
|
F3.KNOWN_BAD = {}
|
||
|
|
||
|
|
||
|
def F4_powell(x):
|
||
|
A = 1e4
|
||
|
return [A*x[0]*x[1] - 1, np.exp(-x[0]) + np.exp(-x[1]) - (1 + 1/A)]
|
||
|
|
||
|
|
||
|
F4_powell.xin = [-1, -2]
|
||
|
F4_powell.KNOWN_BAD = {'linearmixing': nonlin.linearmixing,
|
||
|
'excitingmixing': nonlin.excitingmixing,
|
||
|
'diagbroyden': nonlin.diagbroyden}
|
||
|
|
||
|
|
||
|
def F5(x):
|
||
|
return pressure_network(x, 4, np.array([.5, .5, .5, .5]))
|
||
|
|
||
|
|
||
|
F5.xin = [2., 0, 2, 0]
|
||
|
F5.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing,
|
||
|
'linearmixing': nonlin.linearmixing,
|
||
|
'diagbroyden': nonlin.diagbroyden}
|
||
|
|
||
|
|
||
|
def F6(x):
|
||
|
x1, x2 = x
|
||
|
J0 = np.array([[-4.256, 14.7],
|
||
|
[0.8394989, 0.59964207]])
|
||
|
v = np.array([(x1 + 3) * (x2**5 - 7) + 3*6,
|
||
|
np.sin(x2 * np.exp(x1) - 1)])
|
||
|
return -np.linalg.solve(J0, v)
|
||
|
|
||
|
|
||
|
F6.xin = [-0.5, 1.4]
|
||
|
F6.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing,
|
||
|
'linearmixing': nonlin.linearmixing,
|
||
|
'diagbroyden': nonlin.diagbroyden}
|
||
|
|
||
|
|
||
|
#-------------------------------------------------------------------------------
|
||
|
# Tests
|
||
|
#-------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
class TestNonlin(object):
|
||
|
"""
|
||
|
Check the Broyden methods for a few test problems.
|
||
|
|
||
|
broyden1, broyden2, and newton_krylov must succeed for
|
||
|
all functions. Some of the others don't -- tests in KNOWN_BAD are skipped.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def _check_nonlin_func(self, f, func, f_tol=1e-2):
|
||
|
x = func(f, f.xin, f_tol=f_tol, maxiter=200, verbose=0)
|
||
|
assert_(np.absolute(f(x)).max() < f_tol)
|
||
|
|
||
|
def _check_root(self, f, method, f_tol=1e-2):
|
||
|
res = root(f, f.xin, method=method,
|
||
|
options={'ftol': f_tol, 'maxiter': 200, 'disp': 0})
|
||
|
assert_(np.absolute(res.fun).max() < f_tol)
|
||
|
|
||
|
@pytest.mark.xfail
|
||
|
def _check_func_fail(self, *a, **kw):
|
||
|
pass
|
||
|
|
||
|
def test_problem_nonlin(self):
|
||
|
for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]:
|
||
|
for func in SOLVERS.values():
|
||
|
if func in f.KNOWN_BAD.values():
|
||
|
if func in MUST_WORK.values():
|
||
|
self._check_func_fail(f, func)
|
||
|
continue
|
||
|
self._check_nonlin_func(f, func)
|
||
|
|
||
|
def test_tol_norm_called(self):
|
||
|
# Check that supplying tol_norm keyword to nonlin_solve works
|
||
|
self._tol_norm_used = False
|
||
|
|
||
|
def local_norm_func(x):
|
||
|
self._tol_norm_used = True
|
||
|
return np.absolute(x).max()
|
||
|
|
||
|
nonlin.newton_krylov(F, F.xin, f_tol=1e-2, maxiter=200, verbose=0,
|
||
|
tol_norm=local_norm_func)
|
||
|
assert_(self._tol_norm_used)
|
||
|
|
||
|
def test_problem_root(self):
|
||
|
for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]:
|
||
|
for meth in SOLVERS:
|
||
|
if meth in f.KNOWN_BAD:
|
||
|
if meth in MUST_WORK:
|
||
|
self._check_func_fail(f, meth)
|
||
|
continue
|
||
|
self._check_root(f, meth)
|
||
|
|
||
|
|
||
|
class TestSecant(object):
|
||
|
"""Check that some Jacobian approximations satisfy the secant condition"""
|
||
|
|
||
|
xs = [np.array([1,2,3,4,5], float),
|
||
|
np.array([2,3,4,5,1], float),
|
||
|
np.array([3,4,5,1,2], float),
|
||
|
np.array([4,5,1,2,3], float),
|
||
|
np.array([9,1,9,1,3], float),
|
||
|
np.array([0,1,9,1,3], float),
|
||
|
np.array([5,5,7,1,1], float),
|
||
|
np.array([1,2,7,5,1], float),]
|
||
|
fs = [x**2 - 1 for x in xs]
|
||
|
|
||
|
def _check_secant(self, jac_cls, npoints=1, **kw):
|
||
|
"""
|
||
|
Check that the given Jacobian approximation satisfies secant
|
||
|
conditions for last `npoints` points.
|
||
|
"""
|
||
|
jac = jac_cls(**kw)
|
||
|
jac.setup(self.xs[0], self.fs[0], None)
|
||
|
for j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
|
||
|
jac.update(x, f)
|
||
|
|
||
|
for k in range(min(npoints, j+1)):
|
||
|
dx = self.xs[j-k+1] - self.xs[j-k]
|
||
|
df = self.fs[j-k+1] - self.fs[j-k]
|
||
|
assert_(np.allclose(dx, jac.solve(df)))
|
||
|
|
||
|
# Check that the `npoints` secant bound is strict
|
||
|
if j >= npoints:
|
||
|
dx = self.xs[j-npoints+1] - self.xs[j-npoints]
|
||
|
df = self.fs[j-npoints+1] - self.fs[j-npoints]
|
||
|
assert_(not np.allclose(dx, jac.solve(df)))
|
||
|
|
||
|
def test_broyden1(self):
|
||
|
self._check_secant(nonlin.BroydenFirst)
|
||
|
|
||
|
def test_broyden2(self):
|
||
|
self._check_secant(nonlin.BroydenSecond)
|
||
|
|
||
|
def test_broyden1_update(self):
|
||
|
# Check that BroydenFirst update works as for a dense matrix
|
||
|
jac = nonlin.BroydenFirst(alpha=0.1)
|
||
|
jac.setup(self.xs[0], self.fs[0], None)
|
||
|
|
||
|
B = np.identity(5) * (-1/0.1)
|
||
|
|
||
|
for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
|
||
|
df = f - self.fs[last_j]
|
||
|
dx = x - self.xs[last_j]
|
||
|
B += (df - dot(B, dx))[:,None] * dx[None,:] / dot(dx, dx)
|
||
|
jac.update(x, f)
|
||
|
assert_(np.allclose(jac.todense(), B, rtol=1e-10, atol=1e-13))
|
||
|
|
||
|
def test_broyden2_update(self):
|
||
|
# Check that BroydenSecond update works as for a dense matrix
|
||
|
jac = nonlin.BroydenSecond(alpha=0.1)
|
||
|
jac.setup(self.xs[0], self.fs[0], None)
|
||
|
|
||
|
H = np.identity(5) * (-0.1)
|
||
|
|
||
|
for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
|
||
|
df = f - self.fs[last_j]
|
||
|
dx = x - self.xs[last_j]
|
||
|
H += (dx - dot(H, df))[:,None] * df[None,:] / dot(df, df)
|
||
|
jac.update(x, f)
|
||
|
assert_(np.allclose(jac.todense(), inv(H), rtol=1e-10, atol=1e-13))
|
||
|
|
||
|
def test_anderson(self):
|
||
|
# Anderson mixing (with w0=0) satisfies secant conditions
|
||
|
# for the last M iterates, see [Ey]_
|
||
|
#
|
||
|
# .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).
|
||
|
self._check_secant(nonlin.Anderson, M=3, w0=0, npoints=3)
|
||
|
|
||
|
|
||
|
class TestLinear(object):
|
||
|
"""Solve a linear equation;
|
||
|
some methods find the exact solution in a finite number of steps"""
|
||
|
|
||
|
def _check(self, jac, N, maxiter, complex=False, **kw):
|
||
|
np.random.seed(123)
|
||
|
|
||
|
A = np.random.randn(N, N)
|
||
|
if complex:
|
||
|
A = A + 1j*np.random.randn(N, N)
|
||
|
b = np.random.randn(N)
|
||
|
if complex:
|
||
|
b = b + 1j*np.random.randn(N)
|
||
|
|
||
|
def func(x):
|
||
|
return dot(A, x) - b
|
||
|
|
||
|
sol = nonlin.nonlin_solve(func, np.zeros(N), jac, maxiter=maxiter,
|
||
|
f_tol=1e-6, line_search=None, verbose=0)
|
||
|
assert_(np.allclose(dot(A, sol), b, atol=1e-6))
|
||
|
|
||
|
def test_broyden1(self):
|
||
|
# Broyden methods solve linear systems exactly in 2*N steps
|
||
|
self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, False)
|
||
|
self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, True)
|
||
|
|
||
|
def test_broyden2(self):
|
||
|
# Broyden methods solve linear systems exactly in 2*N steps
|
||
|
self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, False)
|
||
|
self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, True)
|
||
|
|
||
|
def test_anderson(self):
|
||
|
# Anderson is rather similar to Broyden, if given enough storage space
|
||
|
self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, False)
|
||
|
self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, True)
|
||
|
|
||
|
def test_krylov(self):
|
||
|
# Krylov methods solve linear systems exactly in N inner steps
|
||
|
self._check(nonlin.KrylovJacobian, 20, 2, False, inner_m=10)
|
||
|
self._check(nonlin.KrylovJacobian, 20, 2, True, inner_m=10)
|
||
|
|
||
|
|
||
|
class TestJacobianDotSolve(object):
|
||
|
"""Check that solve/dot methods in Jacobian approximations are consistent"""
|
||
|
|
||
|
def _func(self, x):
|
||
|
return x**2 - 1 + np.dot(self.A, x)
|
||
|
|
||
|
def _check_dot(self, jac_cls, complex=False, tol=1e-6, **kw):
|
||
|
np.random.seed(123)
|
||
|
|
||
|
N = 7
|
||
|
|
||
|
def rand(*a):
|
||
|
q = np.random.rand(*a)
|
||
|
if complex:
|
||
|
q = q + 1j*np.random.rand(*a)
|
||
|
return q
|
||
|
|
||
|
def assert_close(a, b, msg):
|
||
|
d = abs(a - b).max()
|
||
|
f = tol + abs(b).max()*tol
|
||
|
if d > f:
|
||
|
raise AssertionError('%s: err %g' % (msg, d))
|
||
|
|
||
|
self.A = rand(N, N)
|
||
|
|
||
|
# initialize
|
||
|
x0 = np.random.rand(N)
|
||
|
jac = jac_cls(**kw)
|
||
|
jac.setup(x0, self._func(x0), self._func)
|
||
|
|
||
|
# check consistency
|
||
|
for k in range(2*N):
|
||
|
v = rand(N)
|
||
|
|
||
|
if hasattr(jac, '__array__'):
|
||
|
Jd = np.array(jac)
|
||
|
if hasattr(jac, 'solve'):
|
||
|
Gv = jac.solve(v)
|
||
|
Gv2 = np.linalg.solve(Jd, v)
|
||
|
assert_close(Gv, Gv2, 'solve vs array')
|
||
|
if hasattr(jac, 'rsolve'):
|
||
|
Gv = jac.rsolve(v)
|
||
|
Gv2 = np.linalg.solve(Jd.T.conj(), v)
|
||
|
assert_close(Gv, Gv2, 'rsolve vs array')
|
||
|
if hasattr(jac, 'matvec'):
|
||
|
Jv = jac.matvec(v)
|
||
|
Jv2 = np.dot(Jd, v)
|
||
|
assert_close(Jv, Jv2, 'dot vs array')
|
||
|
if hasattr(jac, 'rmatvec'):
|
||
|
Jv = jac.rmatvec(v)
|
||
|
Jv2 = np.dot(Jd.T.conj(), v)
|
||
|
assert_close(Jv, Jv2, 'rmatvec vs array')
|
||
|
|
||
|
if hasattr(jac, 'matvec') and hasattr(jac, 'solve'):
|
||
|
Jv = jac.matvec(v)
|
||
|
Jv2 = jac.solve(jac.matvec(Jv))
|
||
|
assert_close(Jv, Jv2, 'dot vs solve')
|
||
|
|
||
|
if hasattr(jac, 'rmatvec') and hasattr(jac, 'rsolve'):
|
||
|
Jv = jac.rmatvec(v)
|
||
|
Jv2 = jac.rmatvec(jac.rsolve(Jv))
|
||
|
assert_close(Jv, Jv2, 'rmatvec vs rsolve')
|
||
|
|
||
|
x = rand(N)
|
||
|
jac.update(x, self._func(x))
|
||
|
|
||
|
def test_broyden1(self):
|
||
|
self._check_dot(nonlin.BroydenFirst, complex=False)
|
||
|
self._check_dot(nonlin.BroydenFirst, complex=True)
|
||
|
|
||
|
def test_broyden2(self):
|
||
|
self._check_dot(nonlin.BroydenSecond, complex=False)
|
||
|
self._check_dot(nonlin.BroydenSecond, complex=True)
|
||
|
|
||
|
def test_anderson(self):
|
||
|
self._check_dot(nonlin.Anderson, complex=False)
|
||
|
self._check_dot(nonlin.Anderson, complex=True)
|
||
|
|
||
|
def test_diagbroyden(self):
|
||
|
self._check_dot(nonlin.DiagBroyden, complex=False)
|
||
|
self._check_dot(nonlin.DiagBroyden, complex=True)
|
||
|
|
||
|
def test_linearmixing(self):
|
||
|
self._check_dot(nonlin.LinearMixing, complex=False)
|
||
|
self._check_dot(nonlin.LinearMixing, complex=True)
|
||
|
|
||
|
def test_excitingmixing(self):
|
||
|
self._check_dot(nonlin.ExcitingMixing, complex=False)
|
||
|
self._check_dot(nonlin.ExcitingMixing, complex=True)
|
||
|
|
||
|
def test_krylov(self):
|
||
|
self._check_dot(nonlin.KrylovJacobian, complex=False, tol=1e-3)
|
||
|
self._check_dot(nonlin.KrylovJacobian, complex=True, tol=1e-3)
|
||
|
|
||
|
|
||
|
class TestNonlinOldTests(object):
|
||
|
""" Test case for a simple constrained entropy maximization problem
|
||
|
(the machine translation example of Berger et al in
|
||
|
Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
|
||
|
"""
|
||
|
|
||
|
def test_broyden1(self):
|
||
|
x = nonlin.broyden1(F,F.xin,iter=12,alpha=1)
|
||
|
assert_(nonlin.norm(x) < 1e-9)
|
||
|
assert_(nonlin.norm(F(x)) < 1e-9)
|
||
|
|
||
|
def test_broyden2(self):
|
||
|
x = nonlin.broyden2(F,F.xin,iter=12,alpha=1)
|
||
|
assert_(nonlin.norm(x) < 1e-9)
|
||
|
assert_(nonlin.norm(F(x)) < 1e-9)
|
||
|
|
||
|
def test_anderson(self):
|
||
|
x = nonlin.anderson(F,F.xin,iter=12,alpha=0.03,M=5)
|
||
|
assert_(nonlin.norm(x) < 0.33)
|
||
|
|
||
|
def test_linearmixing(self):
|
||
|
x = nonlin.linearmixing(F,F.xin,iter=60,alpha=0.5)
|
||
|
assert_(nonlin.norm(x) < 1e-7)
|
||
|
assert_(nonlin.norm(F(x)) < 1e-7)
|
||
|
|
||
|
def test_exciting(self):
|
||
|
x = nonlin.excitingmixing(F,F.xin,iter=20,alpha=0.5)
|
||
|
assert_(nonlin.norm(x) < 1e-5)
|
||
|
assert_(nonlin.norm(F(x)) < 1e-5)
|
||
|
|
||
|
def test_diagbroyden(self):
|
||
|
x = nonlin.diagbroyden(F,F.xin,iter=11,alpha=1)
|
||
|
assert_(nonlin.norm(x) < 1e-8)
|
||
|
assert_(nonlin.norm(F(x)) < 1e-8)
|
||
|
|
||
|
def test_root_broyden1(self):
|
||
|
res = root(F, F.xin, method='broyden1',
|
||
|
options={'nit': 12, 'jac_options': {'alpha': 1}})
|
||
|
assert_(nonlin.norm(res.x) < 1e-9)
|
||
|
assert_(nonlin.norm(res.fun) < 1e-9)
|
||
|
|
||
|
def test_root_broyden2(self):
|
||
|
res = root(F, F.xin, method='broyden2',
|
||
|
options={'nit': 12, 'jac_options': {'alpha': 1}})
|
||
|
assert_(nonlin.norm(res.x) < 1e-9)
|
||
|
assert_(nonlin.norm(res.fun) < 1e-9)
|
||
|
|
||
|
def test_root_anderson(self):
|
||
|
res = root(F, F.xin, method='anderson',
|
||
|
options={'nit': 12,
|
||
|
'jac_options': {'alpha': 0.03, 'M': 5}})
|
||
|
assert_(nonlin.norm(res.x) < 0.33)
|
||
|
|
||
|
def test_root_linearmixing(self):
|
||
|
res = root(F, F.xin, method='linearmixing',
|
||
|
options={'nit': 60,
|
||
|
'jac_options': {'alpha': 0.5}})
|
||
|
assert_(nonlin.norm(res.x) < 1e-7)
|
||
|
assert_(nonlin.norm(res.fun) < 1e-7)
|
||
|
|
||
|
def test_root_excitingmixing(self):
|
||
|
res = root(F, F.xin, method='excitingmixing',
|
||
|
options={'nit': 20,
|
||
|
'jac_options': {'alpha': 0.5}})
|
||
|
assert_(nonlin.norm(res.x) < 1e-5)
|
||
|
assert_(nonlin.norm(res.fun) < 1e-5)
|
||
|
|
||
|
def test_root_diagbroyden(self):
|
||
|
res = root(F, F.xin, method='diagbroyden',
|
||
|
options={'nit': 11,
|
||
|
'jac_options': {'alpha': 1}})
|
||
|
assert_(nonlin.norm(res.x) < 1e-8)
|
||
|
assert_(nonlin.norm(res.fun) < 1e-8)
|