Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
5.2 KiB
129 lines
5.2 KiB
4 years ago
|
"""Docstring components common to several ndimage functions."""
|
||
|
from scipy._lib import doccer
|
||
|
|
||
|
__all__ = ['docfiller']
|
||
|
|
||
|
|
||
|
_input_doc = (
|
||
|
"""input : array_like
|
||
|
The input array.""")
|
||
|
_axis_doc = (
|
||
|
"""axis : int, optional
|
||
|
The axis of `input` along which to calculate. Default is -1.""")
|
||
|
_output_doc = (
|
||
|
"""output : array or dtype, optional
|
||
|
The array in which to place the output, or the dtype of the
|
||
|
returned array. By default an array of the same dtype as input
|
||
|
will be created.""")
|
||
|
_size_foot_doc = (
|
||
|
"""size : scalar or tuple, optional
|
||
|
See footprint, below. Ignored if footprint is given.
|
||
|
footprint : array, optional
|
||
|
Either `size` or `footprint` must be defined. `size` gives
|
||
|
the shape that is taken from the input array, at every element
|
||
|
position, to define the input to the filter function.
|
||
|
`footprint` is a boolean array that specifies (implicitly) a
|
||
|
shape, but also which of the elements within this shape will get
|
||
|
passed to the filter function. Thus ``size=(n,m)`` is equivalent
|
||
|
to ``footprint=np.ones((n,m))``. We adjust `size` to the number
|
||
|
of dimensions of the input array, so that, if the input array is
|
||
|
shape (10,10,10), and `size` is 2, then the actual size used is
|
||
|
(2,2,2). When `footprint` is given, `size` is ignored.""")
|
||
|
_mode_doc = (
|
||
|
"""mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
|
||
|
The `mode` parameter determines how the input array is extended
|
||
|
beyond its boundaries. Default is 'reflect'. Behavior for each valid
|
||
|
value is as follows:
|
||
|
|
||
|
'reflect' (`d c b a | a b c d | d c b a`)
|
||
|
The input is extended by reflecting about the edge of the last
|
||
|
pixel.
|
||
|
|
||
|
'constant' (`k k k k | a b c d | k k k k`)
|
||
|
The input is extended by filling all values beyond the edge with
|
||
|
the same constant value, defined by the `cval` parameter.
|
||
|
|
||
|
'nearest' (`a a a a | a b c d | d d d d`)
|
||
|
The input is extended by replicating the last pixel.
|
||
|
|
||
|
'mirror' (`d c b | a b c d | c b a`)
|
||
|
The input is extended by reflecting about the center of the last
|
||
|
pixel.
|
||
|
|
||
|
'wrap' (`a b c d | a b c d | a b c d`)
|
||
|
The input is extended by wrapping around to the opposite edge.""")
|
||
|
_mode_multiple_doc = (
|
||
|
"""mode : str or sequence, optional
|
||
|
The `mode` parameter determines how the input array is extended
|
||
|
when the filter overlaps a border. By passing a sequence of modes
|
||
|
with length equal to the number of dimensions of the input array,
|
||
|
different modes can be specified along each axis. Default value is
|
||
|
'reflect'. The valid values and their behavior is as follows:
|
||
|
|
||
|
'reflect' (`d c b a | a b c d | d c b a`)
|
||
|
The input is extended by reflecting about the edge of the last
|
||
|
pixel.
|
||
|
|
||
|
'constant' (`k k k k | a b c d | k k k k`)
|
||
|
The input is extended by filling all values beyond the edge with
|
||
|
the same constant value, defined by the `cval` parameter.
|
||
|
|
||
|
'nearest' (`a a a a | a b c d | d d d d`)
|
||
|
The input is extended by replicating the last pixel.
|
||
|
|
||
|
'mirror' (`d c b | a b c d | c b a`)
|
||
|
The input is extended by reflecting about the center of the last
|
||
|
pixel.
|
||
|
|
||
|
'wrap' (`a b c d | a b c d | a b c d`)
|
||
|
The input is extended by wrapping around to the opposite edge.""")
|
||
|
_cval_doc = (
|
||
|
"""cval : scalar, optional
|
||
|
Value to fill past edges of input if `mode` is 'constant'. Default
|
||
|
is 0.0.""")
|
||
|
_origin_doc = (
|
||
|
"""origin : int, optional
|
||
|
Controls the placement of the filter on the input array's pixels.
|
||
|
A value of 0 (the default) centers the filter over the pixel, with
|
||
|
positive values shifting the filter to the left, and negative ones
|
||
|
to the right.""")
|
||
|
_origin_multiple_doc = (
|
||
|
"""origin : int or sequence, optional
|
||
|
Controls the placement of the filter on the input array's pixels.
|
||
|
A value of 0 (the default) centers the filter over the pixel, with
|
||
|
positive values shifting the filter to the left, and negative ones
|
||
|
to the right. By passing a sequence of origins with length equal to
|
||
|
the number of dimensions of the input array, different shifts can
|
||
|
be specified along each axis.""")
|
||
|
_extra_arguments_doc = (
|
||
|
"""extra_arguments : sequence, optional
|
||
|
Sequence of extra positional arguments to pass to passed function.""")
|
||
|
_extra_keywords_doc = (
|
||
|
"""extra_keywords : dict, optional
|
||
|
dict of extra keyword arguments to pass to passed function.""")
|
||
|
_prefilter_doc = (
|
||
|
"""prefilter : bool, optional
|
||
|
Determines if the input array is prefiltered with `spline_filter`
|
||
|
before interpolation. The default is True, which will create a
|
||
|
temporary `float64` array of filtered values if `order > 1`. If
|
||
|
setting this to False, the output will be slightly blurred if
|
||
|
`order > 1`, unless the input is prefiltered, i.e. it is the result
|
||
|
of calling `spline_filter` on the original input.""")
|
||
|
|
||
|
docdict = {
|
||
|
'input': _input_doc,
|
||
|
'axis': _axis_doc,
|
||
|
'output': _output_doc,
|
||
|
'size_foot': _size_foot_doc,
|
||
|
'mode': _mode_doc,
|
||
|
'mode_multiple': _mode_multiple_doc,
|
||
|
'cval': _cval_doc,
|
||
|
'origin': _origin_doc,
|
||
|
'origin_multiple': _origin_multiple_doc,
|
||
|
'extra_arguments': _extra_arguments_doc,
|
||
|
'extra_keywords': _extra_keywords_doc,
|
||
|
'prefilter': _prefilter_doc
|
||
|
}
|
||
|
|
||
|
docfiller = doccer.filldoc(docdict)
|