1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/linalg/_generate_pyx.py

754 lines
24 KiB

"""
Code generator script to make the Cython BLAS and LAPACK wrappers
from the files "cython_blas_signatures.txt" and
"cython_lapack_signatures.txt" which contain the signatures for
all the BLAS/LAPACK routines that should be included in the wrappers.
"""
from collections import defaultdict
from operator import itemgetter
import os
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
fortran_types = {'int': 'integer',
'c': 'complex',
'd': 'double precision',
's': 'real',
'z': 'complex*16',
'char': 'character',
'bint': 'logical'}
c_types = {'int': 'int',
'c': 'npy_complex64',
'd': 'double',
's': 'float',
'z': 'npy_complex128',
'char': 'char',
'bint': 'int',
'cselect1': '_cselect1',
'cselect2': '_cselect2',
'dselect2': '_dselect2',
'dselect3': '_dselect3',
'sselect2': '_sselect2',
'sselect3': '_sselect3',
'zselect1': '_zselect1',
'zselect2': '_zselect2'}
def arg_names_and_types(args):
return zip(*[arg.split(' *') for arg in args.split(', ')])
pyx_func_template = """
cdef extern from "{header_name}":
void _fortran_{name} "F_FUNC({name}wrp, {upname}WRP)"({ret_type} *out, {fort_args}) nogil
cdef {ret_type} {name}({args}) nogil:
cdef {ret_type} out
_fortran_{name}(&out, {argnames})
return out
"""
npy_types = {'c': 'npy_complex64', 'z': 'npy_complex128',
'cselect1': '_cselect1', 'cselect2': '_cselect2',
'dselect2': '_dselect2', 'dselect3': '_dselect3',
'sselect2': '_sselect2', 'sselect3': '_sselect3',
'zselect1': '_zselect1', 'zselect2': '_zselect2'}
def arg_casts(arg):
if arg in ['npy_complex64', 'npy_complex128', '_cselect1', '_cselect2',
'_dselect2', '_dselect3', '_sselect2', '_sselect3',
'_zselect1', '_zselect2']:
return '<{0}*>'.format(arg)
return ''
def pyx_decl_func(name, ret_type, args, header_name):
argtypes, argnames = arg_names_and_types(args)
# Fix the case where one of the arguments has the same name as the
# abbreviation for the argument type.
# Otherwise the variable passed as an argument is considered overwrites
# the previous typedef and Cython compilation fails.
if ret_type in argnames:
argnames = [n if n != ret_type else ret_type + '_' for n in argnames]
argnames = [n if n not in ['lambda', 'in'] else n + '_'
for n in argnames]
args = ', '.join([' *'.join([n, t])
for n, t in zip(argtypes, argnames)])
argtypes = [npy_types.get(t, t) for t in argtypes]
fort_args = ', '.join([' *'.join([n, t])
for n, t in zip(argtypes, argnames)])
argnames = [arg_casts(t) + n for n, t in zip(argnames, argtypes)]
argnames = ', '.join(argnames)
c_ret_type = c_types[ret_type]
args = args.replace('lambda', 'lambda_')
return pyx_func_template.format(name=name, upname=name.upper(), args=args,
fort_args=fort_args, ret_type=ret_type,
c_ret_type=c_ret_type, argnames=argnames,
header_name=header_name)
pyx_sub_template = """cdef extern from "{header_name}":
void _fortran_{name} "F_FUNC({name},{upname})"({fort_args}) nogil
cdef void {name}({args}) nogil:
_fortran_{name}({argnames})
"""
def pyx_decl_sub(name, args, header_name):
argtypes, argnames = arg_names_and_types(args)
argtypes = [npy_types.get(t, t) for t in argtypes]
argnames = [n if n not in ['lambda', 'in'] else n + '_' for n in argnames]
fort_args = ', '.join([' *'.join([n, t])
for n, t in zip(argtypes, argnames)])
argnames = [arg_casts(t) + n for n, t in zip(argnames, argtypes)]
argnames = ', '.join(argnames)
args = args.replace('*lambda,', '*lambda_,').replace('*in,', '*in_,')
return pyx_sub_template.format(name=name, upname=name.upper(),
args=args, fort_args=fort_args,
argnames=argnames, header_name=header_name)
blas_pyx_preamble = '''# cython: boundscheck = False
# cython: wraparound = False
# cython: cdivision = True
"""
BLAS Functions for Cython
=========================
Usable from Cython via::
cimport scipy.linalg.cython_blas
These wrappers do not check for alignment of arrays.
Alignment should be checked before these wrappers are used.
Raw function pointers (Fortran-style pointer arguments):
- {}
"""
# Within SciPy, these wrappers can be used via relative or absolute cimport.
# Examples:
# from ..linalg cimport cython_blas
# from scipy.linalg cimport cython_blas
# cimport scipy.linalg.cython_blas as cython_blas
# cimport ..linalg.cython_blas as cython_blas
# Within SciPy, if BLAS functions are needed in C/C++/Fortran,
# these wrappers should not be used.
# The original libraries should be linked directly.
cdef extern from "fortran_defs.h":
pass
from numpy cimport npy_complex64, npy_complex128
'''
def make_blas_pyx_preamble(all_sigs):
names = [sig[0] for sig in all_sigs]
return blas_pyx_preamble.format("\n- ".join(names))
lapack_pyx_preamble = '''"""
LAPACK functions for Cython
===========================
Usable from Cython via::
cimport scipy.linalg.cython_lapack
This module provides Cython-level wrappers for all primary routines included
in LAPACK 3.4.0 except for ``zcgesv`` since its interface is not consistent
from LAPACK 3.4.0 to 3.6.0. It also provides some of the
fixed-api auxiliary routines.
These wrappers do not check for alignment of arrays.
Alignment should be checked before these wrappers are used.
Raw function pointers (Fortran-style pointer arguments):
- {}
"""
# Within SciPy, these wrappers can be used via relative or absolute cimport.
# Examples:
# from ..linalg cimport cython_lapack
# from scipy.linalg cimport cython_lapack
# cimport scipy.linalg.cython_lapack as cython_lapack
# cimport ..linalg.cython_lapack as cython_lapack
# Within SciPy, if LAPACK functions are needed in C/C++/Fortran,
# these wrappers should not be used.
# The original libraries should be linked directly.
cdef extern from "fortran_defs.h":
pass
from numpy cimport npy_complex64, npy_complex128
cdef extern from "_lapack_subroutines.h":
# Function pointer type declarations for
# gees and gges families of functions.
ctypedef bint _cselect1(npy_complex64*)
ctypedef bint _cselect2(npy_complex64*, npy_complex64*)
ctypedef bint _dselect2(d*, d*)
ctypedef bint _dselect3(d*, d*, d*)
ctypedef bint _sselect2(s*, s*)
ctypedef bint _sselect3(s*, s*, s*)
ctypedef bint _zselect1(npy_complex128*)
ctypedef bint _zselect2(npy_complex128*, npy_complex128*)
'''
def make_lapack_pyx_preamble(all_sigs):
names = [sig[0] for sig in all_sigs]
return lapack_pyx_preamble.format("\n- ".join(names))
blas_py_wrappers = """
# Python-accessible wrappers for testing:
cdef inline bint _is_contiguous(double[:,:] a, int axis) nogil:
return (a.strides[axis] == sizeof(a[0,0]) or a.shape[axis] == 1)
cpdef float complex _test_cdotc(float complex[:] cx, float complex[:] cy) nogil:
cdef:
int n = cx.shape[0]
int incx = cx.strides[0] // sizeof(cx[0])
int incy = cy.strides[0] // sizeof(cy[0])
return cdotc(&n, &cx[0], &incx, &cy[0], &incy)
cpdef float complex _test_cdotu(float complex[:] cx, float complex[:] cy) nogil:
cdef:
int n = cx.shape[0]
int incx = cx.strides[0] // sizeof(cx[0])
int incy = cy.strides[0] // sizeof(cy[0])
return cdotu(&n, &cx[0], &incx, &cy[0], &incy)
cpdef double _test_dasum(double[:] dx) nogil:
cdef:
int n = dx.shape[0]
int incx = dx.strides[0] // sizeof(dx[0])
return dasum(&n, &dx[0], &incx)
cpdef double _test_ddot(double[:] dx, double[:] dy) nogil:
cdef:
int n = dx.shape[0]
int incx = dx.strides[0] // sizeof(dx[0])
int incy = dy.strides[0] // sizeof(dy[0])
return ddot(&n, &dx[0], &incx, &dy[0], &incy)
cpdef int _test_dgemm(double alpha, double[:,:] a, double[:,:] b, double beta,
double[:,:] c) nogil except -1:
cdef:
char *transa
char *transb
int m, n, k, lda, ldb, ldc
double *a0=&a[0,0]
double *b0=&b[0,0]
double *c0=&c[0,0]
# In the case that c is C contiguous, swap a and b and
# swap whether or not each of them is transposed.
# This can be done because a.dot(b) = b.T.dot(a.T).T.
if _is_contiguous(c, 1):
if _is_contiguous(a, 1):
transb = 'n'
ldb = (&a[1,0]) - a0 if a.shape[0] > 1 else 1
elif _is_contiguous(a, 0):
transb = 't'
ldb = (&a[0,1]) - a0 if a.shape[1] > 1 else 1
else:
with gil:
raise ValueError("Input 'a' is neither C nor Fortran contiguous.")
if _is_contiguous(b, 1):
transa = 'n'
lda = (&b[1,0]) - b0 if b.shape[0] > 1 else 1
elif _is_contiguous(b, 0):
transa = 't'
lda = (&b[0,1]) - b0 if b.shape[1] > 1 else 1
else:
with gil:
raise ValueError("Input 'b' is neither C nor Fortran contiguous.")
k = b.shape[0]
if k != a.shape[1]:
with gil:
raise ValueError("Shape mismatch in input arrays.")
m = b.shape[1]
n = a.shape[0]
if n != c.shape[0] or m != c.shape[1]:
with gil:
raise ValueError("Output array does not have the correct shape.")
ldc = (&c[1,0]) - c0 if c.shape[0] > 1 else 1
dgemm(transa, transb, &m, &n, &k, &alpha, b0, &lda, a0,
&ldb, &beta, c0, &ldc)
elif _is_contiguous(c, 0):
if _is_contiguous(a, 1):
transa = 't'
lda = (&a[1,0]) - a0 if a.shape[0] > 1 else 1
elif _is_contiguous(a, 0):
transa = 'n'
lda = (&a[0,1]) - a0 if a.shape[1] > 1 else 1
else:
with gil:
raise ValueError("Input 'a' is neither C nor Fortran contiguous.")
if _is_contiguous(b, 1):
transb = 't'
ldb = (&b[1,0]) - b0 if b.shape[0] > 1 else 1
elif _is_contiguous(b, 0):
transb = 'n'
ldb = (&b[0,1]) - b0 if b.shape[1] > 1 else 1
else:
with gil:
raise ValueError("Input 'b' is neither C nor Fortran contiguous.")
m = a.shape[0]
k = a.shape[1]
if k != b.shape[0]:
with gil:
raise ValueError("Shape mismatch in input arrays.")
n = b.shape[1]
if m != c.shape[0] or n != c.shape[1]:
with gil:
raise ValueError("Output array does not have the correct shape.")
ldc = (&c[0,1]) - c0 if c.shape[1] > 1 else 1
dgemm(transa, transb, &m, &n, &k, &alpha, a0, &lda, b0,
&ldb, &beta, c0, &ldc)
else:
with gil:
raise ValueError("Input 'c' is neither C nor Fortran contiguous.")
return 0
cpdef double _test_dnrm2(double[:] x) nogil:
cdef:
int n = x.shape[0]
int incx = x.strides[0] // sizeof(x[0])
return dnrm2(&n, &x[0], &incx)
cpdef double _test_dzasum(double complex[:] zx) nogil:
cdef:
int n = zx.shape[0]
int incx = zx.strides[0] // sizeof(zx[0])
return dzasum(&n, &zx[0], &incx)
cpdef double _test_dznrm2(double complex[:] x) nogil:
cdef:
int n = x.shape[0]
int incx = x.strides[0] // sizeof(x[0])
return dznrm2(&n, &x[0], &incx)
cpdef int _test_icamax(float complex[:] cx) nogil:
cdef:
int n = cx.shape[0]
int incx = cx.strides[0] // sizeof(cx[0])
return icamax(&n, &cx[0], &incx)
cpdef int _test_idamax(double[:] dx) nogil:
cdef:
int n = dx.shape[0]
int incx = dx.strides[0] // sizeof(dx[0])
return idamax(&n, &dx[0], &incx)
cpdef int _test_isamax(float[:] sx) nogil:
cdef:
int n = sx.shape[0]
int incx = sx.strides[0] // sizeof(sx[0])
return isamax(&n, &sx[0], &incx)
cpdef int _test_izamax(double complex[:] zx) nogil:
cdef:
int n = zx.shape[0]
int incx = zx.strides[0] // sizeof(zx[0])
return izamax(&n, &zx[0], &incx)
cpdef float _test_sasum(float[:] sx) nogil:
cdef:
int n = sx.shape[0]
int incx = sx.shape[0] // sizeof(sx[0])
return sasum(&n, &sx[0], &incx)
cpdef float _test_scasum(float complex[:] cx) nogil:
cdef:
int n = cx.shape[0]
int incx = cx.strides[0] // sizeof(cx[0])
return scasum(&n, &cx[0], &incx)
cpdef float _test_scnrm2(float complex[:] x) nogil:
cdef:
int n = x.shape[0]
int incx = x.strides[0] // sizeof(x[0])
return scnrm2(&n, &x[0], &incx)
cpdef float _test_sdot(float[:] sx, float[:] sy) nogil:
cdef:
int n = sx.shape[0]
int incx = sx.strides[0] // sizeof(sx[0])
int incy = sy.strides[0] // sizeof(sy[0])
return sdot(&n, &sx[0], &incx, &sy[0], &incy)
cpdef float _test_snrm2(float[:] x) nogil:
cdef:
int n = x.shape[0]
int incx = x.shape[0] // sizeof(x[0])
return snrm2(&n, &x[0], &incx)
cpdef double complex _test_zdotc(double complex[:] zx, double complex[:] zy) nogil:
cdef:
int n = zx.shape[0]
int incx = zx.strides[0] // sizeof(zx[0])
int incy = zy.strides[0] // sizeof(zy[0])
return zdotc(&n, &zx[0], &incx, &zy[0], &incy)
cpdef double complex _test_zdotu(double complex[:] zx, double complex[:] zy) nogil:
cdef:
int n = zx.shape[0]
int incx = zx.strides[0] // sizeof(zx[0])
int incy = zy.strides[0] // sizeof(zy[0])
return zdotu(&n, &zx[0], &incx, &zy[0], &incy)
"""
def generate_blas_pyx(func_sigs, sub_sigs, all_sigs, header_name):
funcs = "\n".join(pyx_decl_func(*(s+(header_name,))) for s in func_sigs)
subs = "\n" + "\n".join(pyx_decl_sub(*(s[::2]+(header_name,)))
for s in sub_sigs)
return make_blas_pyx_preamble(all_sigs) + funcs + subs + blas_py_wrappers
lapack_py_wrappers = """
# Python accessible wrappers for testing:
def _test_dlamch(cmach):
# This conversion is necessary to handle Python 3 strings.
cmach_bytes = bytes(cmach)
# Now that it is a bytes representation, a non-temporary variable
# must be passed as a part of the function call.
cdef char* cmach_char = cmach_bytes
return dlamch(cmach_char)
def _test_slamch(cmach):
# This conversion is necessary to handle Python 3 strings.
cmach_bytes = bytes(cmach)
# Now that it is a bytes representation, a non-temporary variable
# must be passed as a part of the function call.
cdef char* cmach_char = cmach_bytes
return slamch(cmach_char)
"""
def generate_lapack_pyx(func_sigs, sub_sigs, all_sigs, header_name):
funcs = "\n".join(pyx_decl_func(*(s+(header_name,))) for s in func_sigs)
subs = "\n" + "\n".join(pyx_decl_sub(*(s[::2]+(header_name,)))
for s in sub_sigs)
preamble = make_lapack_pyx_preamble(all_sigs)
return preamble + funcs + subs + lapack_py_wrappers
pxd_template = """ctypedef {ret_type} {name}_t({args}) nogil
cdef {name}_t *{name}_f
"""
pxd_template = """cdef {ret_type} {name}({args}) nogil
"""
def pxd_decl(name, ret_type, args):
args = args.replace('lambda', 'lambda_').replace('*in,', '*in_,')
return pxd_template.format(name=name, ret_type=ret_type, args=args)
blas_pxd_preamble = """# Within scipy, these wrappers can be used via relative or absolute cimport.
# Examples:
# from ..linalg cimport cython_blas
# from scipy.linalg cimport cython_blas
# cimport scipy.linalg.cython_blas as cython_blas
# cimport ..linalg.cython_blas as cython_blas
# Within SciPy, if BLAS functions are needed in C/C++/Fortran,
# these wrappers should not be used.
# The original libraries should be linked directly.
ctypedef float s
ctypedef double d
ctypedef float complex c
ctypedef double complex z
"""
def generate_blas_pxd(all_sigs):
body = '\n'.join(pxd_decl(*sig) for sig in all_sigs)
return blas_pxd_preamble + body
lapack_pxd_preamble = """# Within SciPy, these wrappers can be used via relative or absolute cimport.
# Examples:
# from ..linalg cimport cython_lapack
# from scipy.linalg cimport cython_lapack
# cimport scipy.linalg.cython_lapack as cython_lapack
# cimport ..linalg.cython_lapack as cython_lapack
# Within SciPy, if LAPACK functions are needed in C/C++/Fortran,
# these wrappers should not be used.
# The original libraries should be linked directly.
ctypedef float s
ctypedef double d
ctypedef float complex c
ctypedef double complex z
# Function pointer type declarations for
# gees and gges families of functions.
ctypedef bint cselect1(c*)
ctypedef bint cselect2(c*, c*)
ctypedef bint dselect2(d*, d*)
ctypedef bint dselect3(d*, d*, d*)
ctypedef bint sselect2(s*, s*)
ctypedef bint sselect3(s*, s*, s*)
ctypedef bint zselect1(z*)
ctypedef bint zselect2(z*, z*)
"""
def generate_lapack_pxd(all_sigs):
return lapack_pxd_preamble + '\n'.join(pxd_decl(*sig) for sig in all_sigs)
fortran_template = """ subroutine {name}wrp(
+ ret,
+ {argnames}
+ )
external {wrapper}
{ret_type} {wrapper}
{ret_type} ret
{argdecls}
ret = {wrapper}(
+ {argnames}
+ )
end
"""
dims = {'work': '(*)', 'ab': '(ldab,*)', 'a': '(lda,*)', 'dl': '(*)',
'd': '(*)', 'du': '(*)', 'ap': '(*)', 'e': '(*)', 'lld': '(*)'}
xy_specialized_dims = {'x': '', 'y': ''}
a_specialized_dims = {'a': '(*)'}
special_cases = defaultdict(dict,
ladiv = xy_specialized_dims,
lanhf = a_specialized_dims,
lansf = a_specialized_dims,
lapy2 = xy_specialized_dims,
lapy3 = xy_specialized_dims)
def process_fortran_name(name, funcname):
if 'inc' in name:
return name
special = special_cases[funcname[1:]]
if 'x' in name or 'y' in name:
suffix = special.get(name, '(n)')
else:
suffix = special.get(name, '')
return name + suffix
def called_name(name):
included = ['cdotc', 'cdotu', 'zdotc', 'zdotu', 'cladiv', 'zladiv']
if name in included:
return "w" + name
return name
def fort_subroutine_wrapper(name, ret_type, args):
wrapper = called_name(name)
types, names = arg_names_and_types(args)
argnames = ',\n + '.join(names)
names = [process_fortran_name(n, name) for n in names]
argdecls = '\n '.join('{0} {1}'.format(fortran_types[t], n)
for n, t in zip(names, types))
return fortran_template.format(name=name, wrapper=wrapper,
argnames=argnames, argdecls=argdecls,
ret_type=fortran_types[ret_type])
def generate_fortran(func_sigs):
return "\n".join(fort_subroutine_wrapper(*sig) for sig in func_sigs)
def make_c_args(args):
types, names = arg_names_and_types(args)
types = [c_types[arg] for arg in types]
return ', '.join('{0} *{1}'.format(t, n) for t, n in zip(types, names))
c_func_template = ("void F_FUNC({name}wrp, {upname}WRP)"
"({return_type} *ret, {args});\n")
def c_func_decl(name, return_type, args):
args = make_c_args(args)
return_type = c_types[return_type]
return c_func_template.format(name=name, upname=name.upper(),
return_type=return_type, args=args)
c_sub_template = "void F_FUNC({name},{upname})({args});\n"
def c_sub_decl(name, return_type, args):
args = make_c_args(args)
return c_sub_template.format(name=name, upname=name.upper(), args=args)
c_preamble = """#ifndef SCIPY_LINALG_{lib}_FORTRAN_WRAPPERS_H
#define SCIPY_LINALG_{lib}_FORTRAN_WRAPPERS_H
#include "fortran_defs.h"
#include "numpy/arrayobject.h"
"""
lapack_decls = """
typedef int (*_cselect1)(npy_complex64*);
typedef int (*_cselect2)(npy_complex64*, npy_complex64*);
typedef int (*_dselect2)(double*, double*);
typedef int (*_dselect3)(double*, double*, double*);
typedef int (*_sselect2)(float*, float*);
typedef int (*_sselect3)(float*, float*, float*);
typedef int (*_zselect1)(npy_complex128*);
typedef int (*_zselect2)(npy_complex128*, npy_complex128*);
"""
cpp_guard = """
#ifdef __cplusplus
extern "C" {
#endif
"""
c_end = """
#ifdef __cplusplus
}
#endif
#endif
"""
def generate_c_header(func_sigs, sub_sigs, all_sigs, lib_name):
funcs = "".join(c_func_decl(*sig) for sig in func_sigs)
subs = "\n" + "".join(c_sub_decl(*sig) for sig in sub_sigs)
if lib_name == 'LAPACK':
preamble = (c_preamble.format(lib=lib_name) + lapack_decls)
else:
preamble = c_preamble.format(lib=lib_name)
return "".join([preamble, cpp_guard, funcs, subs, c_end])
def split_signature(sig):
name_and_type, args = sig[:-1].split('(')
ret_type, name = name_and_type.split(' ')
return name, ret_type, args
def filter_lines(lines):
lines = [line for line in map(str.strip, lines)
if line and not line.startswith('#')]
func_sigs = [split_signature(line) for line in lines
if line.split(' ')[0] != 'void']
sub_sigs = [split_signature(line) for line in lines
if line.split(' ')[0] == 'void']
all_sigs = list(sorted(func_sigs + sub_sigs, key=itemgetter(0)))
return func_sigs, sub_sigs, all_sigs
def all_newer(src_files, dst_files):
from distutils.dep_util import newer
return all(os.path.exists(dst) and newer(dst, src)
for dst in dst_files for src in src_files)
def make_all(blas_signature_file="cython_blas_signatures.txt",
lapack_signature_file="cython_lapack_signatures.txt",
blas_name="cython_blas",
lapack_name="cython_lapack",
blas_fortran_name="_blas_subroutine_wrappers.f",
lapack_fortran_name="_lapack_subroutine_wrappers.f",
blas_header_name="_blas_subroutines.h",
lapack_header_name="_lapack_subroutines.h"):
src_files = (os.path.abspath(__file__),
blas_signature_file,
lapack_signature_file)
dst_files = (blas_name + '.pyx',
blas_name + '.pxd',
blas_fortran_name,
blas_header_name,
lapack_name + '.pyx',
lapack_name + '.pxd',
lapack_fortran_name,
lapack_header_name)
os.chdir(BASE_DIR)
if all_newer(src_files, dst_files):
print("scipy/linalg/_generate_pyx.py: all files up-to-date")
return
comments = ["This file was generated by _generate_pyx.py.\n",
"Do not edit this file directly.\n"]
ccomment = ''.join(['/* ' + line.rstrip() + ' */\n'
for line in comments]) + '\n'
pyxcomment = ''.join(['# ' + line for line in comments]) + '\n'
fcomment = ''.join(['c ' + line for line in comments]) + '\n'
with open(blas_signature_file, 'r') as f:
blas_sigs = f.readlines()
blas_sigs = filter_lines(blas_sigs)
blas_pyx = generate_blas_pyx(*(blas_sigs + (blas_header_name,)))
with open(blas_name + '.pyx', 'w') as f:
f.write(pyxcomment)
f.write(blas_pyx)
blas_pxd = generate_blas_pxd(blas_sigs[2])
with open(blas_name + '.pxd', 'w') as f:
f.write(pyxcomment)
f.write(blas_pxd)
blas_fortran = generate_fortran(blas_sigs[0])
with open(blas_fortran_name, 'w') as f:
f.write(fcomment)
f.write(blas_fortran)
blas_c_header = generate_c_header(*(blas_sigs + ('BLAS',)))
with open(blas_header_name, 'w') as f:
f.write(ccomment)
f.write(blas_c_header)
with open(lapack_signature_file, 'r') as f:
lapack_sigs = f.readlines()
lapack_sigs = filter_lines(lapack_sigs)
lapack_pyx = generate_lapack_pyx(*(lapack_sigs + (lapack_header_name,)))
with open(lapack_name + '.pyx', 'w') as f:
f.write(pyxcomment)
f.write(lapack_pyx)
lapack_pxd = generate_lapack_pxd(lapack_sigs[2])
with open(lapack_name + '.pxd', 'w') as f:
f.write(pyxcomment)
f.write(lapack_pxd)
lapack_fortran = generate_fortran(lapack_sigs[0])
with open(lapack_fortran_name, 'w') as f:
f.write(fcomment)
f.write(lapack_fortran)
lapack_c_header = generate_c_header(*(lapack_sigs + ('LAPACK',)))
with open(lapack_header_name, 'w') as f:
f.write(ccomment)
f.write(lapack_c_header)
if __name__ == '__main__':
make_all()