1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/io/tests/test_paths.py

95 lines
3.2 KiB

"""
Ensure that we can use pathlib.Path objects in all relevant IO functions.
"""
import sys
from pathlib import Path
import numpy as np
import scipy.io
import scipy.io.wavfile
from scipy._lib._tmpdirs import tempdir
import scipy.sparse
class TestPaths:
data = np.arange(5).astype(np.int64)
def test_savemat(self):
with tempdir() as temp_dir:
path = Path(temp_dir) / 'data.mat'
scipy.io.savemat(path, {'data': self.data})
assert path.is_file()
def test_loadmat(self):
# Save data with string path, load with pathlib.Path
with tempdir() as temp_dir:
path = Path(temp_dir) / 'data.mat'
scipy.io.savemat(str(path), {'data': self.data})
mat_contents = scipy.io.loadmat(path)
assert (mat_contents['data'] == self.data).all()
def test_whosmat(self):
# Save data with string path, load with pathlib.Path
with tempdir() as temp_dir:
path = Path(temp_dir) / 'data.mat'
scipy.io.savemat(str(path), {'data': self.data})
contents = scipy.io.whosmat(path)
assert contents[0] == ('data', (1, 5), 'int64')
def test_readsav(self):
path = Path(__file__).parent / 'data/scalar_string.sav'
scipy.io.readsav(path)
def test_hb_read(self):
# Save data with string path, load with pathlib.Path
with tempdir() as temp_dir:
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
path = Path(temp_dir) / 'data.hb'
scipy.io.harwell_boeing.hb_write(str(path), data)
data_new = scipy.io.harwell_boeing.hb_read(path)
assert (data_new != data).nnz == 0
def test_hb_write(self):
with tempdir() as temp_dir:
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
path = Path(temp_dir) / 'data.hb'
scipy.io.harwell_boeing.hb_write(path, data)
assert path.is_file()
def test_mmio_read(self):
# Save data with string path, load with pathlib.Path
with tempdir() as temp_dir:
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
path = Path(temp_dir) / 'data.mtx'
scipy.io.mmwrite(str(path), data)
data_new = scipy.io.mmread(path)
assert (data_new != data).nnz == 0
def test_mmio_write(self):
with tempdir() as temp_dir:
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
path = Path(temp_dir) / 'data.mtx'
scipy.io.mmwrite(path, data)
def test_netcdf_file(self):
path = Path(__file__).parent / 'data/example_1.nc'
scipy.io.netcdf.netcdf_file(path)
def test_wavfile_read(self):
path = Path(__file__).parent / 'data/test-8000Hz-le-2ch-1byteu.wav'
scipy.io.wavfile.read(path)
def test_wavfile_write(self):
# Read from str path, write to Path
input_path = Path(__file__).parent / 'data/test-8000Hz-le-2ch-1byteu.wav'
rate, data = scipy.io.wavfile.read(str(input_path))
with tempdir() as temp_dir:
output_path = Path(temp_dir) / input_path.name
scipy.io.wavfile.write(output_path, rate, data)