Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.2 KiB
95 lines
3.2 KiB
4 years ago
|
"""
|
||
|
Ensure that we can use pathlib.Path objects in all relevant IO functions.
|
||
|
"""
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
import scipy.io
|
||
|
import scipy.io.wavfile
|
||
|
from scipy._lib._tmpdirs import tempdir
|
||
|
import scipy.sparse
|
||
|
|
||
|
|
||
|
class TestPaths:
|
||
|
data = np.arange(5).astype(np.int64)
|
||
|
|
||
|
def test_savemat(self):
|
||
|
with tempdir() as temp_dir:
|
||
|
path = Path(temp_dir) / 'data.mat'
|
||
|
scipy.io.savemat(path, {'data': self.data})
|
||
|
assert path.is_file()
|
||
|
|
||
|
def test_loadmat(self):
|
||
|
# Save data with string path, load with pathlib.Path
|
||
|
with tempdir() as temp_dir:
|
||
|
path = Path(temp_dir) / 'data.mat'
|
||
|
scipy.io.savemat(str(path), {'data': self.data})
|
||
|
|
||
|
mat_contents = scipy.io.loadmat(path)
|
||
|
assert (mat_contents['data'] == self.data).all()
|
||
|
|
||
|
def test_whosmat(self):
|
||
|
# Save data with string path, load with pathlib.Path
|
||
|
with tempdir() as temp_dir:
|
||
|
path = Path(temp_dir) / 'data.mat'
|
||
|
scipy.io.savemat(str(path), {'data': self.data})
|
||
|
|
||
|
contents = scipy.io.whosmat(path)
|
||
|
assert contents[0] == ('data', (1, 5), 'int64')
|
||
|
|
||
|
def test_readsav(self):
|
||
|
path = Path(__file__).parent / 'data/scalar_string.sav'
|
||
|
scipy.io.readsav(path)
|
||
|
|
||
|
def test_hb_read(self):
|
||
|
# Save data with string path, load with pathlib.Path
|
||
|
with tempdir() as temp_dir:
|
||
|
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
|
||
|
path = Path(temp_dir) / 'data.hb'
|
||
|
scipy.io.harwell_boeing.hb_write(str(path), data)
|
||
|
|
||
|
data_new = scipy.io.harwell_boeing.hb_read(path)
|
||
|
assert (data_new != data).nnz == 0
|
||
|
|
||
|
def test_hb_write(self):
|
||
|
with tempdir() as temp_dir:
|
||
|
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
|
||
|
path = Path(temp_dir) / 'data.hb'
|
||
|
scipy.io.harwell_boeing.hb_write(path, data)
|
||
|
assert path.is_file()
|
||
|
|
||
|
def test_mmio_read(self):
|
||
|
# Save data with string path, load with pathlib.Path
|
||
|
with tempdir() as temp_dir:
|
||
|
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
|
||
|
path = Path(temp_dir) / 'data.mtx'
|
||
|
scipy.io.mmwrite(str(path), data)
|
||
|
|
||
|
data_new = scipy.io.mmread(path)
|
||
|
assert (data_new != data).nnz == 0
|
||
|
|
||
|
def test_mmio_write(self):
|
||
|
with tempdir() as temp_dir:
|
||
|
data = scipy.sparse.csr_matrix(scipy.sparse.eye(3))
|
||
|
path = Path(temp_dir) / 'data.mtx'
|
||
|
scipy.io.mmwrite(path, data)
|
||
|
|
||
|
def test_netcdf_file(self):
|
||
|
path = Path(__file__).parent / 'data/example_1.nc'
|
||
|
scipy.io.netcdf.netcdf_file(path)
|
||
|
|
||
|
def test_wavfile_read(self):
|
||
|
path = Path(__file__).parent / 'data/test-8000Hz-le-2ch-1byteu.wav'
|
||
|
scipy.io.wavfile.read(path)
|
||
|
|
||
|
def test_wavfile_write(self):
|
||
|
# Read from str path, write to Path
|
||
|
input_path = Path(__file__).parent / 'data/test-8000Hz-le-2ch-1byteu.wav'
|
||
|
rate, data = scipy.io.wavfile.read(str(input_path))
|
||
|
|
||
|
with tempdir() as temp_dir:
|
||
|
output_path = Path(temp_dir) / input_path.name
|
||
|
scipy.io.wavfile.write(output_path, rate, data)
|