1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/io/arff/arffread.py

906 lines
26 KiB

# Last Change: Mon Aug 20 08:00 PM 2007 J
import re
import datetime
from collections import OrderedDict
import numpy as np
import csv
import ctypes
"""A module to read arff files."""
__all__ = ['MetaData', 'loadarff', 'ArffError', 'ParseArffError']
# An Arff file is basically two parts:
# - header
# - data
#
# A header has each of its components starting by @META where META is one of
# the keyword (attribute of relation, for now).
# TODO:
# - both integer and reals are treated as numeric -> the integer info
# is lost!
# - Replace ValueError by ParseError or something
# We know can handle the following:
# - numeric and nominal attributes
# - missing values for numeric attributes
r_meta = re.compile(r'^\s*@')
# Match a comment
r_comment = re.compile(r'^%')
# Match an empty line
r_empty = re.compile(r'^\s+$')
# Match a header line, that is a line which starts by @ + a word
r_headerline = re.compile(r'^\s*@\S*')
r_datameta = re.compile(r'^@[Dd][Aa][Tt][Aa]')
r_relation = re.compile(r'^@[Rr][Ee][Ll][Aa][Tt][Ii][Oo][Nn]\s*(\S*)')
r_attribute = re.compile(r'^\s*@[Aa][Tt][Tt][Rr][Ii][Bb][Uu][Tt][Ee]\s*(..*$)')
r_nominal = re.compile('{(.+)}')
r_date = re.compile(r"[Dd][Aa][Tt][Ee]\s+[\"']?(.+?)[\"']?$")
# To get attributes name enclosed with ''
r_comattrval = re.compile(r"'(..+)'\s+(..+$)")
# To get normal attributes
r_wcomattrval = re.compile(r"(\S+)\s+(..+$)")
# ------------------------
# Module defined exception
# ------------------------
class ArffError(IOError):
pass
class ParseArffError(ArffError):
pass
# ----------
# Attributes
# ----------
class Attribute(object):
type_name = None
def __init__(self, name):
self.name = name
self.range = None
self.dtype = np.object_
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
"""
return None
def parse_data(self, data_str):
"""
Parse a value of this type.
"""
return None
def __str__(self):
"""
Parse a value of this type.
"""
return self.name + ',' + self.type_name
class NominalAttribute(Attribute):
type_name = 'nominal'
def __init__(self, name, values):
super().__init__(name)
self.values = values
self.range = values
self.dtype = (np.string_, max(len(i) for i in values))
@staticmethod
def _get_nom_val(atrv):
"""Given a string containing a nominal type, returns a tuple of the
possible values.
A nominal type is defined as something framed between braces ({}).
Parameters
----------
atrv : str
Nominal type definition
Returns
-------
poss_vals : tuple
possible values
Examples
--------
>>> get_nom_val("{floup, bouga, fl, ratata}")
('floup', 'bouga', 'fl', 'ratata')
"""
m = r_nominal.match(atrv)
if m:
attrs, _ = split_data_line(m.group(1))
return tuple(attrs)
else:
raise ValueError("This does not look like a nominal string")
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For nominal attributes, the attribute string would be like '{<attr_1>,
<attr2>, <attr_3>}'.
"""
if attr_string[0] == '{':
values = cls._get_nom_val(attr_string)
return cls(name, values)
else:
return None
def parse_data(self, data_str):
"""
Parse a value of this type.
"""
if data_str in self.values:
return data_str
elif data_str == '?':
return data_str
else:
raise ValueError("%s value not in %s" % (str(data_str),
str(self.values)))
def __str__(self):
msg = self.name + ",{"
for i in range(len(self.values)-1):
msg += self.values[i] + ","
msg += self.values[-1]
msg += "}"
return msg
class NumericAttribute(Attribute):
def __init__(self, name):
super().__init__(name)
self.type_name = 'numeric'
self.dtype = np.float_
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For numeric attributes, the attribute string would be like
'numeric' or 'int' or 'real'.
"""
attr_string = attr_string.lower().strip()
if(attr_string[:len('numeric')] == 'numeric' or
attr_string[:len('int')] == 'int' or
attr_string[:len('real')] == 'real'):
return cls(name)
else:
return None
def parse_data(self, data_str):
"""
Parse a value of this type.
Parameters
----------
data_str : str
string to convert
Returns
-------
f : float
where float can be nan
Examples
--------
>>> atr = NumericAttribute('atr')
>>> atr.parse_data('1')
1.0
>>> atr.parse_data('1\\n')
1.0
>>> atr.parse_data('?\\n')
nan
"""
if '?' in data_str:
return np.nan
else:
return float(data_str)
def _basic_stats(self, data):
nbfac = data.size * 1. / (data.size - 1)
return (np.nanmin(data), np.nanmax(data),
np.mean(data), np.std(data) * nbfac)
class StringAttribute(Attribute):
def __init__(self, name):
super().__init__(name)
self.type_name = 'string'
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For string attributes, the attribute string would be like
'string'.
"""
attr_string = attr_string.lower().strip()
if attr_string[:len('string')] == 'string':
return cls(name)
else:
return None
class DateAttribute(Attribute):
def __init__(self, name, date_format, datetime_unit):
super().__init__(name)
self.date_format = date_format
self.datetime_unit = datetime_unit
self.type_name = 'date'
self.range = date_format
self.dtype = np.datetime64(0, self.datetime_unit)
@staticmethod
def _get_date_format(atrv):
m = r_date.match(atrv)
if m:
pattern = m.group(1).strip()
# convert time pattern from Java's SimpleDateFormat to C's format
datetime_unit = None
if "yyyy" in pattern:
pattern = pattern.replace("yyyy", "%Y")
datetime_unit = "Y"
elif "yy":
pattern = pattern.replace("yy", "%y")
datetime_unit = "Y"
if "MM" in pattern:
pattern = pattern.replace("MM", "%m")
datetime_unit = "M"
if "dd" in pattern:
pattern = pattern.replace("dd", "%d")
datetime_unit = "D"
if "HH" in pattern:
pattern = pattern.replace("HH", "%H")
datetime_unit = "h"
if "mm" in pattern:
pattern = pattern.replace("mm", "%M")
datetime_unit = "m"
if "ss" in pattern:
pattern = pattern.replace("ss", "%S")
datetime_unit = "s"
if "z" in pattern or "Z" in pattern:
raise ValueError("Date type attributes with time zone not "
"supported, yet")
if datetime_unit is None:
raise ValueError("Invalid or unsupported date format")
return pattern, datetime_unit
else:
raise ValueError("Invalid or no date format")
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For date attributes, the attribute string would be like
'date <format>'.
"""
attr_string_lower = attr_string.lower().strip()
if attr_string_lower[:len('date')] == 'date':
date_format, datetime_unit = cls._get_date_format(attr_string)
return cls(name, date_format, datetime_unit)
else:
return None
def parse_data(self, data_str):
"""
Parse a value of this type.
"""
date_str = data_str.strip().strip("'").strip('"')
if date_str == '?':
return np.datetime64('NaT', self.datetime_unit)
else:
dt = datetime.datetime.strptime(date_str, self.date_format)
return np.datetime64(dt).astype(
"datetime64[%s]" % self.datetime_unit)
def __str__(self):
return super(DateAttribute, self).__str__() + ',' + self.date_format
class RelationalAttribute(Attribute):
def __init__(self, name):
super().__init__(name)
self.type_name = 'relational'
self.dtype = np.object_
self.attributes = []
self.dialect = None
@classmethod
def parse_attribute(cls, name, attr_string):
"""
Parse the attribute line if it knows how. Returns the parsed
attribute, or None.
For date attributes, the attribute string would be like
'date <format>'.
"""
attr_string_lower = attr_string.lower().strip()
if attr_string_lower[:len('relational')] == 'relational':
return cls(name)
else:
return None
def parse_data(self, data_str):
# Copy-pasted
elems = list(range(len(self.attributes)))
escaped_string = data_str.encode().decode("unicode-escape")
row_tuples = []
for raw in escaped_string.split("\n"):
row, self.dialect = split_data_line(raw, self.dialect)
row_tuples.append(tuple(
[self.attributes[i].parse_data(row[i]) for i in elems]))
return np.array(row_tuples,
[(a.name, a.dtype) for a in self.attributes])
def __str__(self):
return (super(RelationalAttribute, self).__str__() + '\n\t' +
'\n\t'.join(str(a) for a in self.attributes))
# -----------------
# Various utilities
# -----------------
def to_attribute(name, attr_string):
attr_classes = (NominalAttribute, NumericAttribute, DateAttribute,
StringAttribute, RelationalAttribute)
for cls in attr_classes:
attr = cls.parse_attribute(name, attr_string)
if attr is not None:
return attr
raise ParseArffError("unknown attribute %s" % attr_string)
def csv_sniffer_has_bug_last_field():
"""
Checks if the bug https://bugs.python.org/issue30157 is unpatched.
"""
# We only compute this once.
has_bug = getattr(csv_sniffer_has_bug_last_field, "has_bug", None)
if has_bug is None:
dialect = csv.Sniffer().sniff("3, 'a'")
csv_sniffer_has_bug_last_field.has_bug = dialect.quotechar != "'"
has_bug = csv_sniffer_has_bug_last_field.has_bug
return has_bug
def workaround_csv_sniffer_bug_last_field(sniff_line, dialect, delimiters):
"""
Workaround for the bug https://bugs.python.org/issue30157 if is unpatched.
"""
if csv_sniffer_has_bug_last_field():
# Reuses code from the csv module
right_regex = r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'
for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # .*?",
right_regex, # ,".*?"
r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
matches = regexp.findall(sniff_line)
if matches:
break
# If it does not match the expression that was bugged, then this bug does not apply
if restr != right_regex:
return
groupindex = regexp.groupindex
# There is only one end of the string
assert len(matches) == 1
m = matches[0]
n = groupindex['quote'] - 1
quote = m[n]
n = groupindex['delim'] - 1
delim = m[n]
n = groupindex['space'] - 1
space = bool(m[n])
dq_regexp = re.compile(
r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" %
{'delim': re.escape(delim), 'quote': quote}, re.MULTILINE
)
doublequote = bool(dq_regexp.search(sniff_line))
dialect.quotechar = quote
if delim in delimiters:
dialect.delimiter = delim
dialect.doublequote = doublequote
dialect.skipinitialspace = space
def split_data_line(line, dialect=None):
delimiters = ",\t"
# This can not be done in a per reader basis, and relational fields
# can be HUGE
csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2))
# Remove the line end if any
if line[-1] == '\n':
line = line[:-1]
sniff_line = line
# Add a delimiter if none is present, so that the csv.Sniffer
# does not complain for a single-field CSV.
if not any(d in line for d in delimiters):
sniff_line += ","
if dialect is None:
dialect = csv.Sniffer().sniff(sniff_line, delimiters=delimiters)
workaround_csv_sniffer_bug_last_field(sniff_line=sniff_line,
dialect=dialect,
delimiters=delimiters)
row = next(csv.reader([line], dialect))
return row, dialect
# --------------
# Parsing header
# --------------
def tokenize_attribute(iterable, attribute):
"""Parse a raw string in header (e.g., starts by @attribute).
Given a raw string attribute, try to get the name and type of the
attribute. Constraints:
* The first line must start with @attribute (case insensitive, and
space like characters before @attribute are allowed)
* Works also if the attribute is spread on multilines.
* Works if empty lines or comments are in between
Parameters
----------
attribute : str
the attribute string.
Returns
-------
name : str
name of the attribute
value : str
value of the attribute
next : str
next line to be parsed
Examples
--------
If attribute is a string defined in python as r"floupi real", will
return floupi as name, and real as value.
>>> iterable = iter([0] * 10) # dummy iterator
>>> tokenize_attribute(iterable, r"@attribute floupi real")
('floupi', 'real', 0)
If attribute is r"'floupi 2' real", will return 'floupi 2' as name,
and real as value.
>>> tokenize_attribute(iterable, r" @attribute 'floupi 2' real ")
('floupi 2', 'real', 0)
"""
sattr = attribute.strip()
mattr = r_attribute.match(sattr)
if mattr:
# atrv is everything after @attribute
atrv = mattr.group(1)
if r_comattrval.match(atrv):
name, type = tokenize_single_comma(atrv)
next_item = next(iterable)
elif r_wcomattrval.match(atrv):
name, type = tokenize_single_wcomma(atrv)
next_item = next(iterable)
else:
# Not sure we should support this, as it does not seem supported by
# weka.
raise ValueError("multi line not supported yet")
else:
raise ValueError("First line unparsable: %s" % sattr)
attribute = to_attribute(name, type)
if type.lower() == 'relational':
next_item = read_relational_attribute(iterable, attribute, next_item)
# raise ValueError("relational attributes not supported yet")
return attribute, next_item
def tokenize_single_comma(val):
# XXX we match twice the same string (here and at the caller level). It is
# stupid, but it is easier for now...
m = r_comattrval.match(val)
if m:
try:
name = m.group(1).strip()
type = m.group(2).strip()
except IndexError:
raise ValueError("Error while tokenizing attribute")
else:
raise ValueError("Error while tokenizing single %s" % val)
return name, type
def tokenize_single_wcomma(val):
# XXX we match twice the same string (here and at the caller level). It is
# stupid, but it is easier for now...
m = r_wcomattrval.match(val)
if m:
try:
name = m.group(1).strip()
type = m.group(2).strip()
except IndexError:
raise ValueError("Error while tokenizing attribute")
else:
raise ValueError("Error while tokenizing single %s" % val)
return name, type
def read_relational_attribute(ofile, relational_attribute, i):
"""Read the nested attributes of a relational attribute"""
r_end_relational = re.compile(r'^@[Ee][Nn][Dd]\s*' +
relational_attribute.name + r'\s*$')
while not r_end_relational.match(i):
m = r_headerline.match(i)
if m:
isattr = r_attribute.match(i)
if isattr:
attr, i = tokenize_attribute(ofile, i)
relational_attribute.attributes.append(attr)
else:
raise ValueError("Error parsing line %s" % i)
else:
i = next(ofile)
i = next(ofile)
return i
def read_header(ofile):
"""Read the header of the iterable ofile."""
i = next(ofile)
# Pass first comments
while r_comment.match(i):
i = next(ofile)
# Header is everything up to DATA attribute ?
relation = None
attributes = []
while not r_datameta.match(i):
m = r_headerline.match(i)
if m:
isattr = r_attribute.match(i)
if isattr:
attr, i = tokenize_attribute(ofile, i)
attributes.append(attr)
else:
isrel = r_relation.match(i)
if isrel:
relation = isrel.group(1)
else:
raise ValueError("Error parsing line %s" % i)
i = next(ofile)
else:
i = next(ofile)
return relation, attributes
class MetaData(object):
"""Small container to keep useful information on a ARFF dataset.
Knows about attributes names and types.
Examples
--------
::
data, meta = loadarff('iris.arff')
# This will print the attributes names of the iris.arff dataset
for i in meta:
print(i)
# This works too
meta.names()
# Getting attribute type
types = meta.types()
Methods
-------
names
types
Notes
-----
Also maintains the list of attributes in order, i.e., doing for i in
meta, where meta is an instance of MetaData, will return the
different attribute names in the order they were defined.
"""
def __init__(self, rel, attr):
self.name = rel
# We need the dictionary to be ordered
self._attributes = OrderedDict((a.name, a) for a in attr)
def __repr__(self):
msg = ""
msg += "Dataset: %s\n" % self.name
for i in self._attributes:
msg += "\t%s's type is %s" % (i, self._attributes[i].type_name)
if self._attributes[i].range:
msg += ", range is %s" % str(self._attributes[i].range)
msg += '\n'
return msg
def __iter__(self):
return iter(self._attributes)
def __getitem__(self, key):
attr = self._attributes[key]
return (attr.type_name, attr.range)
def names(self):
"""Return the list of attribute names.
Returns
-------
attrnames : list of str
The attribute names.
"""
return list(self._attributes)
def types(self):
"""Return the list of attribute types.
Returns
-------
attr_types : list of str
The attribute types.
"""
attr_types = [self._attributes[name].type_name
for name in self._attributes]
return attr_types
def loadarff(f):
"""
Read an arff file.
The data is returned as a record array, which can be accessed much like
a dictionary of NumPy arrays. For example, if one of the attributes is
called 'pressure', then its first 10 data points can be accessed from the
``data`` record array like so: ``data['pressure'][0:10]``
Parameters
----------
f : file-like or str
File-like object to read from, or filename to open.
Returns
-------
data : record array
The data of the arff file, accessible by attribute names.
meta : `MetaData`
Contains information about the arff file such as name and
type of attributes, the relation (name of the dataset), etc.
Raises
------
ParseArffError
This is raised if the given file is not ARFF-formatted.
NotImplementedError
The ARFF file has an attribute which is not supported yet.
Notes
-----
This function should be able to read most arff files. Not
implemented functionality include:
* date type attributes
* string type attributes
It can read files with numeric and nominal attributes. It cannot read
files with sparse data ({} in the file). However, this function can
read files with missing data (? in the file), representing the data
points as NaNs.
Examples
--------
>>> from scipy.io import arff
>>> from io import StringIO
>>> content = \"\"\"
... @relation foo
... @attribute width numeric
... @attribute height numeric
... @attribute color {red,green,blue,yellow,black}
... @data
... 5.0,3.25,blue
... 4.5,3.75,green
... 3.0,4.00,red
... \"\"\"
>>> f = StringIO(content)
>>> data, meta = arff.loadarff(f)
>>> data
array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],
dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
>>> meta
Dataset: foo
\twidth's type is numeric
\theight's type is numeric
\tcolor's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')
"""
if hasattr(f, 'read'):
ofile = f
else:
ofile = open(f, 'rt')
try:
return _loadarff(ofile)
finally:
if ofile is not f: # only close what we opened
ofile.close()
def _loadarff(ofile):
# Parse the header file
try:
rel, attr = read_header(ofile)
except ValueError as e:
msg = "Error while parsing header, error was: " + str(e)
raise ParseArffError(msg)
# Check whether we have a string attribute (not supported yet)
hasstr = False
for a in attr:
if isinstance(a, StringAttribute):
hasstr = True
meta = MetaData(rel, attr)
# XXX The following code is not great
# Build the type descriptor descr and the list of convertors to convert
# each attribute to the suitable type (which should match the one in
# descr).
# This can be used once we want to support integer as integer values and
# not as numeric anymore (using masked arrays ?).
if hasstr:
# How to support string efficiently ? Ideally, we should know the max
# size of the string before allocating the numpy array.
raise NotImplementedError("String attributes not supported yet, sorry")
ni = len(attr)
def generator(row_iter, delim=','):
# TODO: this is where we are spending time (~80%). I think things
# could be made more efficiently:
# - We could for example "compile" the function, because some values
# do not change here.
# - The function to convert a line to dtyped values could also be
# generated on the fly from a string and be executed instead of
# looping.
# - The regex are overkill: for comments, checking that a line starts
# by % should be enough and faster, and for empty lines, same thing
# --> this does not seem to change anything.
# 'compiling' the range since it does not change
# Note, I have already tried zipping the converters and
# row elements and got slightly worse performance.
elems = list(range(ni))
dialect = None
for raw in row_iter:
# We do not abstract skipping comments and empty lines for
# performance reasons.
if r_comment.match(raw) or r_empty.match(raw):
continue
row, dialect = split_data_line(raw, dialect)
yield tuple([attr[i].parse_data(row[i]) for i in elems])
a = list(generator(ofile))
# No error should happen here: it is a bug otherwise
data = np.array(a, [(a.name, a.dtype) for a in attr])
return data, meta
# ----
# Misc
# ----
def basic_stats(data):
nbfac = data.size * 1. / (data.size - 1)
return np.nanmin(data), np.nanmax(data), np.mean(data), np.std(data) * nbfac
def print_attribute(name, tp, data):
type = tp.type_name
if type == 'numeric' or type == 'real' or type == 'integer':
min, max, mean, std = basic_stats(data)
print("%s,%s,%f,%f,%f,%f" % (name, type, min, max, mean, std))
else:
print(str(tp))
def test_weka(filename):
data, meta = loadarff(filename)
print(len(data.dtype))
print(data.size)
for i in meta:
print_attribute(i, meta[i], data[i])
# make sure nose does not find this as a test
test_weka.__test__ = False
if __name__ == '__main__':
import sys
filename = sys.argv[1]
test_weka(filename)