1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/fft/_pocketfft/helper.py

214 lines
5.4 KiB

from numbers import Number
import operator
import os
import threading
import contextlib
import numpy as np
# good_size is exposed (and used) from this import
from .pypocketfft import good_size
_config = threading.local()
_cpu_count = os.cpu_count()
def _iterable_of_int(x, name=None):
"""Convert ``x`` to an iterable sequence of int
Parameters
----------
x : value, or sequence of values, convertible to int
name : str, optional
Name of the argument being converted, only used in the error message
Returns
-------
y : ``List[int]``
"""
if isinstance(x, Number):
x = (x,)
try:
x = [operator.index(a) for a in x]
except TypeError as e:
name = name or "value"
raise ValueError("{} must be a scalar or iterable of integers"
.format(name)) from e
return x
def _init_nd_shape_and_axes(x, shape, axes):
"""Handles shape and axes arguments for nd transforms"""
noshape = shape is None
noaxes = axes is None
if not noaxes:
axes = _iterable_of_int(axes, 'axes')
axes = [a + x.ndim if a < 0 else a for a in axes]
if any(a >= x.ndim or a < 0 for a in axes):
raise ValueError("axes exceeds dimensionality of input")
if len(set(axes)) != len(axes):
raise ValueError("all axes must be unique")
if not noshape:
shape = _iterable_of_int(shape, 'shape')
if axes and len(axes) != len(shape):
raise ValueError("when given, axes and shape arguments"
" have to be of the same length")
if noaxes:
if len(shape) > x.ndim:
raise ValueError("shape requires more axes than are present")
axes = range(x.ndim - len(shape), x.ndim)
shape = [x.shape[a] if s == -1 else s for s, a in zip(shape, axes)]
elif noaxes:
shape = list(x.shape)
axes = range(x.ndim)
else:
shape = [x.shape[a] for a in axes]
if any(s < 1 for s in shape):
raise ValueError(
"invalid number of data points ({0}) specified".format(shape))
return shape, axes
def _asfarray(x):
"""
Convert to array with floating or complex dtype.
float16 values are also promoted to float32.
"""
if not hasattr(x, "dtype"):
x = np.asarray(x)
if x.dtype == np.float16:
return np.asarray(x, np.float32)
elif x.dtype.kind not in 'fc':
return np.asarray(x, np.float64)
# Require native byte order
dtype = x.dtype.newbyteorder('=')
# Always align input
copy = not x.flags['ALIGNED']
return np.array(x, dtype=dtype, copy=copy)
def _datacopied(arr, original):
"""
Strict check for `arr` not sharing any data with `original`,
under the assumption that arr = asarray(original)
"""
if arr is original:
return False
if not isinstance(original, np.ndarray) and hasattr(original, '__array__'):
return False
return arr.base is None
def _fix_shape(x, shape, axes):
"""Internal auxiliary function for _raw_fft, _raw_fftnd."""
must_copy = False
# Build an nd slice with the dimensions to be read from x
index = [slice(None)]*x.ndim
for n, ax in zip(shape, axes):
if x.shape[ax] >= n:
index[ax] = slice(0, n)
else:
index[ax] = slice(0, x.shape[ax])
must_copy = True
index = tuple(index)
if not must_copy:
return x[index], False
s = list(x.shape)
for n, axis in zip(shape, axes):
s[axis] = n
z = np.zeros(s, x.dtype)
z[index] = x[index]
return z, True
def _fix_shape_1d(x, n, axis):
if n < 1:
raise ValueError(
"invalid number of data points ({0}) specified".format(n))
return _fix_shape(x, (n,), (axis,))
def _normalization(norm, forward):
"""Returns the pypocketfft normalization mode from the norm argument"""
if norm is None:
return 0 if forward else 2
if norm == 'ortho':
return 1
raise ValueError(
"Invalid norm value {}, should be None or \"ortho\".".format(norm))
def _workers(workers):
if workers is None:
return getattr(_config, 'default_workers', 1)
if workers < 0:
if workers >= -_cpu_count:
workers += 1 + _cpu_count
else:
raise ValueError("workers value out of range; got {}, must not be"
" less than {}".format(workers, -_cpu_count))
elif workers == 0:
raise ValueError("workers must not be zero")
return workers
@contextlib.contextmanager
def set_workers(workers):
"""Context manager for the default number of workers used in `scipy.fft`
Parameters
----------
workers : int
The default number of workers to use
Examples
--------
>>> from scipy import fft, signal
>>> x = np.random.randn(128, 64)
>>> with fft.set_workers(4):
... y = signal.fftconvolve(x, x)
"""
old_workers = get_workers()
_config.default_workers = _workers(operator.index(workers))
try:
yield
finally:
_config.default_workers = old_workers
def get_workers():
"""Returns the default number of workers within the current context
Examples
--------
>>> from scipy import fft
>>> fft.get_workers()
1
>>> with fft.set_workers(4):
... fft.get_workers()
4
"""
return getattr(_config, 'default_workers', 1)