Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
4.0 KiB
130 lines
4.0 KiB
4 years ago
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.errors import UnsupportedFunctionCall
|
||
|
|
||
|
from pandas import DataFrame, DatetimeIndex, Series, date_range
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.window import ExponentialMovingWindow
|
||
|
|
||
|
|
||
|
def test_doc_string():
|
||
|
|
||
|
df = DataFrame({"B": [0, 1, 2, np.nan, 4]})
|
||
|
df
|
||
|
df.ewm(com=0.5).mean()
|
||
|
|
||
|
|
||
|
def test_constructor(which):
|
||
|
|
||
|
c = which.ewm
|
||
|
|
||
|
# valid
|
||
|
c(com=0.5)
|
||
|
c(span=1.5)
|
||
|
c(alpha=0.5)
|
||
|
c(halflife=0.75)
|
||
|
c(com=0.5, span=None)
|
||
|
c(alpha=0.5, com=None)
|
||
|
c(halflife=0.75, alpha=None)
|
||
|
|
||
|
# not valid: mutually exclusive
|
||
|
msg = "comass, span, halflife, and alpha are mutually exclusive"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
c(com=0.5, alpha=0.5)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
c(span=1.5, halflife=0.75)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
c(alpha=0.5, span=1.5)
|
||
|
|
||
|
# not valid: com < 0
|
||
|
msg = "comass must satisfy: comass >= 0"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
c(com=-0.5)
|
||
|
|
||
|
# not valid: span < 1
|
||
|
msg = "span must satisfy: span >= 1"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
c(span=0.5)
|
||
|
|
||
|
# not valid: halflife <= 0
|
||
|
msg = "halflife must satisfy: halflife > 0"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
c(halflife=0)
|
||
|
|
||
|
# not valid: alpha <= 0 or alpha > 1
|
||
|
msg = "alpha must satisfy: 0 < alpha <= 1"
|
||
|
for alpha in (-0.5, 1.5):
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
c(alpha=alpha)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["std", "mean", "var"])
|
||
|
def test_numpy_compat(method):
|
||
|
# see gh-12811
|
||
|
e = ExponentialMovingWindow(Series([2, 4, 6]), alpha=0.5)
|
||
|
|
||
|
msg = "numpy operations are not valid with window objects"
|
||
|
|
||
|
with pytest.raises(UnsupportedFunctionCall, match=msg):
|
||
|
getattr(e, method)(1, 2, 3)
|
||
|
with pytest.raises(UnsupportedFunctionCall, match=msg):
|
||
|
getattr(e, method)(dtype=np.float64)
|
||
|
|
||
|
|
||
|
def test_ewma_times_not_datetime_type():
|
||
|
msg = r"times must be datetime64\[ns\] dtype."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
Series(range(5)).ewm(times=np.arange(5))
|
||
|
|
||
|
|
||
|
def test_ewma_times_not_same_length():
|
||
|
msg = "times must be the same length as the object."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
Series(range(5)).ewm(times=np.arange(4).astype("datetime64[ns]"))
|
||
|
|
||
|
|
||
|
def test_ewma_halflife_not_correct_type():
|
||
|
msg = "halflife must be a string or datetime.timedelta object"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
Series(range(5)).ewm(halflife=1, times=np.arange(5).astype("datetime64[ns]"))
|
||
|
|
||
|
|
||
|
def test_ewma_halflife_without_times(halflife_with_times):
|
||
|
msg = "halflife can only be a timedelta convertible argument if times is not None."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
Series(range(5)).ewm(halflife=halflife_with_times)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"times",
|
||
|
[
|
||
|
np.arange(10).astype("datetime64[D]").astype("datetime64[ns]"),
|
||
|
date_range("2000", freq="D", periods=10),
|
||
|
date_range("2000", freq="D", periods=10).tz_localize("UTC"),
|
||
|
"time_col",
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("min_periods", [0, 2])
|
||
|
def test_ewma_with_times_equal_spacing(halflife_with_times, times, min_periods):
|
||
|
halflife = halflife_with_times
|
||
|
data = np.arange(10.0)
|
||
|
data[::2] = np.nan
|
||
|
df = DataFrame({"A": data, "time_col": date_range("2000", freq="D", periods=10)})
|
||
|
result = df.ewm(halflife=halflife, min_periods=min_periods, times=times).mean()
|
||
|
expected = df.ewm(halflife=1.0, min_periods=min_periods).mean()
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_ewma_with_times_variable_spacing(tz_aware_fixture):
|
||
|
tz = tz_aware_fixture
|
||
|
halflife = "23 days"
|
||
|
times = DatetimeIndex(
|
||
|
["2020-01-01", "2020-01-10T00:04:05", "2020-02-23T05:00:23"]
|
||
|
).tz_localize(tz)
|
||
|
data = np.arange(3)
|
||
|
df = DataFrame(data)
|
||
|
result = df.ewm(halflife=halflife, times=times).mean()
|
||
|
expected = DataFrame([0.0, 0.5674161888241773, 1.545239952073459])
|
||
|
tm.assert_frame_equal(result, expected)
|