1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/indexing/test_timedelta.py

123 lines
4.0 KiB

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
class TestTimedeltaIndexing:
def test_loc_setitem_bool_mask(self):
# GH 14946
df = pd.DataFrame({"x": range(10)})
df.index = pd.to_timedelta(range(10), unit="s")
conditions = [df["x"] > 3, df["x"] == 3, df["x"] < 3]
expected_data = [
[0, 1, 2, 3, 10, 10, 10, 10, 10, 10],
[0, 1, 2, 10, 4, 5, 6, 7, 8, 9],
[10, 10, 10, 3, 4, 5, 6, 7, 8, 9],
]
for cond, data in zip(conditions, expected_data):
result = df.copy()
result.loc[cond, "x"] = 10
expected = pd.DataFrame(
data,
index=pd.to_timedelta(range(10), unit="s"),
columns=["x"],
dtype="int64",
)
tm.assert_frame_equal(expected, result)
@pytest.mark.parametrize(
"indexer, expected",
[
(0, [20, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
(slice(4, 8), [0, 1, 2, 3, 20, 20, 20, 20, 8, 9]),
([3, 5], [0, 1, 2, 20, 4, 20, 6, 7, 8, 9]),
],
)
def test_list_like_indexing(self, indexer, expected):
# GH 16637
df = pd.DataFrame({"x": range(10)}, dtype="int64")
df.index = pd.to_timedelta(range(10), unit="s")
df.loc[df.index[indexer], "x"] = 20
expected = pd.DataFrame(
expected,
index=pd.to_timedelta(range(10), unit="s"),
columns=["x"],
dtype="int64",
)
tm.assert_frame_equal(expected, df)
def test_string_indexing(self):
# GH 16896
df = pd.DataFrame({"x": range(3)}, index=pd.to_timedelta(range(3), unit="days"))
expected = df.iloc[0]
sliced = df.loc["0 days"]
tm.assert_series_equal(sliced, expected)
@pytest.mark.parametrize("value", [None, pd.NaT, np.nan])
def test_setitem_mask_na_value_td64(self, value):
# issue (#18586)
series = pd.Series([0, 1, 2], dtype="timedelta64[ns]")
series[series == series[0]] = value
expected = pd.Series([pd.NaT, 1, 2], dtype="timedelta64[ns]")
tm.assert_series_equal(series, expected)
@pytest.mark.parametrize("value", [None, pd.NaT, np.nan])
def test_listlike_setitem(self, value):
# issue (#18586)
series = pd.Series([0, 1, 2], dtype="timedelta64[ns]")
series.iloc[0] = value
expected = pd.Series([pd.NaT, 1, 2], dtype="timedelta64[ns]")
tm.assert_series_equal(series, expected)
@pytest.mark.parametrize(
"start,stop, expected_slice",
[
[np.timedelta64(0, "ns"), None, slice(0, 11)],
[np.timedelta64(1, "D"), np.timedelta64(6, "D"), slice(1, 7)],
[None, np.timedelta64(4, "D"), slice(0, 5)],
],
)
def test_numpy_timedelta_scalar_indexing(self, start, stop, expected_slice):
# GH 20393
s = pd.Series(range(11), pd.timedelta_range("0 days", "10 days"))
result = s.loc[slice(start, stop)]
expected = s.iloc[expected_slice]
tm.assert_series_equal(result, expected)
def test_roundtrip_thru_setitem(self):
# PR 23462
dt1 = pd.Timedelta(0)
dt2 = pd.Timedelta(28767471428571405)
df = pd.DataFrame({"dt": pd.Series([dt1, dt2])})
df_copy = df.copy()
s = pd.Series([dt1])
expected = df["dt"].iloc[1].value
df.loc[[True, False]] = s
result = df["dt"].iloc[1].value
assert expected == result
tm.assert_frame_equal(df, df_copy)
def test_loc_str_slicing(self):
ix = pd.timedelta_range(start="1 day", end="2 days", freq="1H")
ser = ix.to_series()
result = ser.loc[:"1 days"]
expected = ser.iloc[:-1]
tm.assert_series_equal(result, expected)
def test_loc_slicing(self):
ix = pd.timedelta_range(start="1 day", end="2 days", freq="1H")
ser = ix.to_series()
result = ser.loc[: ix[-2]]
expected = ser.iloc[:-1]
tm.assert_series_equal(result, expected)