1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/indexes/test_numeric.py

682 lines
22 KiB

from datetime import datetime, timedelta
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
import pandas as pd
from pandas import Float64Index, Index, Int64Index, Series, UInt64Index
import pandas._testing as tm
from pandas.tests.indexes.common import Base
class Numeric(Base):
def test_where(self):
# Tested in numeric.test_indexing
pass
def test_can_hold_identifiers(self):
idx = self.create_index()
key = idx[0]
assert idx._can_hold_identifiers_and_holds_name(key) is False
def test_format(self):
# GH35439
idx = self.create_index()
max_width = max(len(str(x)) for x in idx)
expected = [str(x).ljust(max_width) for x in idx]
assert idx.format() == expected
def test_numeric_compat(self):
pass # override Base method
def test_explicit_conversions(self):
# GH 8608
# add/sub are overridden explicitly for Float/Int Index
idx = self._holder(np.arange(5, dtype="int64"))
# float conversions
arr = np.arange(5, dtype="int64") * 3.2
expected = Float64Index(arr)
fidx = idx * 3.2
tm.assert_index_equal(fidx, expected)
fidx = 3.2 * idx
tm.assert_index_equal(fidx, expected)
# interops with numpy arrays
expected = Float64Index(arr)
a = np.zeros(5, dtype="float64")
result = fidx - a
tm.assert_index_equal(result, expected)
expected = Float64Index(-arr)
a = np.zeros(5, dtype="float64")
result = a - fidx
tm.assert_index_equal(result, expected)
def test_index_groupby(self):
int_idx = Index(range(6))
float_idx = Index(np.arange(0, 0.6, 0.1))
obj_idx = Index("A B C D E F".split())
dt_idx = pd.date_range("2013-01-01", freq="M", periods=6)
for idx in [int_idx, float_idx, obj_idx, dt_idx]:
to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1])
tm.assert_dict_equal(
idx.groupby(to_groupby), {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]}
)
to_groupby = Index(
[
datetime(2011, 11, 1),
datetime(2011, 12, 1),
pd.NaT,
pd.NaT,
datetime(2011, 12, 1),
datetime(2011, 11, 1),
],
tz="UTC",
).values
ex_keys = [Timestamp("2011-11-01"), Timestamp("2011-12-01")]
expected = {ex_keys[0]: idx[[0, 5]], ex_keys[1]: idx[[1, 4]]}
tm.assert_dict_equal(idx.groupby(to_groupby), expected)
def test_insert(self, nulls_fixture):
# GH 18295 (test missing)
index = self.create_index()
expected = Float64Index([index[0], np.nan] + list(index[1:]))
result = index.insert(1, nulls_fixture)
tm.assert_index_equal(result, expected)
class TestFloat64Index(Numeric):
_holder = Float64Index
@pytest.fixture(
params=[
[1.5, 2, 3, 4, 5],
[0.0, 2.5, 5.0, 7.5, 10.0],
[5, 4, 3, 2, 1.5],
[10.0, 7.5, 5.0, 2.5, 0.0],
],
ids=["mixed", "float", "mixed_dec", "float_dec"],
)
def index(self, request):
return Float64Index(request.param)
@pytest.fixture
def mixed_index(self):
return Float64Index([1.5, 2, 3, 4, 5])
@pytest.fixture
def float_index(self):
return Float64Index([0.0, 2.5, 5.0, 7.5, 10.0])
def create_index(self) -> Float64Index:
return Float64Index(np.arange(5, dtype="float64"))
def test_repr_roundtrip(self, index):
tm.assert_index_equal(eval(repr(index)), index)
def check_is_index(self, i):
assert isinstance(i, Index)
assert not isinstance(i, Float64Index)
def check_coerce(self, a, b, is_float_index=True):
assert a.equals(b)
tm.assert_index_equal(a, b, exact=False)
if is_float_index:
assert isinstance(b, Float64Index)
else:
self.check_is_index(b)
def test_constructor(self):
# explicit construction
index = Float64Index([1, 2, 3, 4, 5])
assert isinstance(index, Float64Index)
expected = np.array([1, 2, 3, 4, 5], dtype="float64")
tm.assert_numpy_array_equal(index.values, expected)
index = Float64Index(np.array([1, 2, 3, 4, 5]))
assert isinstance(index, Float64Index)
index = Float64Index([1.0, 2, 3, 4, 5])
assert isinstance(index, Float64Index)
index = Float64Index(np.array([1.0, 2, 3, 4, 5]))
assert isinstance(index, Float64Index)
assert index.dtype == float
index = Float64Index(np.array([1.0, 2, 3, 4, 5]), dtype=np.float32)
assert isinstance(index, Float64Index)
assert index.dtype == np.float64
index = Float64Index(np.array([1, 2, 3, 4, 5]), dtype=np.float32)
assert isinstance(index, Float64Index)
assert index.dtype == np.float64
# nan handling
result = Float64Index([np.nan, np.nan])
assert pd.isna(result.values).all()
result = Float64Index(np.array([np.nan]))
assert pd.isna(result.values).all()
result = Index(np.array([np.nan]))
assert pd.isna(result.values).all()
@pytest.mark.parametrize(
"index, dtype",
[
(pd.Int64Index, "float64"),
(pd.UInt64Index, "categorical"),
(pd.Float64Index, "datetime64"),
(pd.RangeIndex, "float64"),
],
)
def test_invalid_dtype(self, index, dtype):
# GH 29539
with pytest.raises(
ValueError,
match=rf"Incorrect `dtype` passed: expected \w+(?: \w+)?, received {dtype}",
):
index([1, 2, 3], dtype=dtype)
def test_constructor_invalid(self):
# invalid
msg = (
r"Float64Index\(\.\.\.\) must be called with a collection of "
r"some kind, 0\.0 was passed"
)
with pytest.raises(TypeError, match=msg):
Float64Index(0.0)
msg = (
"String dtype not supported, "
"you may need to explicitly cast to a numeric type"
)
with pytest.raises(TypeError, match=msg):
Float64Index(["a", "b", 0.0])
msg = r"float\(\) argument must be a string or a number, not 'Timestamp'"
with pytest.raises(TypeError, match=msg):
Float64Index([Timestamp("20130101")])
def test_constructor_coerce(self, mixed_index, float_index):
self.check_coerce(mixed_index, Index([1.5, 2, 3, 4, 5]))
self.check_coerce(float_index, Index(np.arange(5) * 2.5))
self.check_coerce(
float_index, Index(np.array(np.arange(5) * 2.5, dtype=object))
)
def test_constructor_explicit(self, mixed_index, float_index):
# these don't auto convert
self.check_coerce(
float_index, Index((np.arange(5) * 2.5), dtype=object), is_float_index=False
)
self.check_coerce(
mixed_index, Index([1.5, 2, 3, 4, 5], dtype=object), is_float_index=False
)
def test_type_coercion_fail(self, any_int_dtype):
# see gh-15832
msg = "Trying to coerce float values to integers"
with pytest.raises(ValueError, match=msg):
Index([1, 2, 3.5], dtype=any_int_dtype)
def test_type_coercion_valid(self, float_dtype):
# There is no Float32Index, so we always
# generate Float64Index.
i = Index([1, 2, 3.5], dtype=float_dtype)
tm.assert_index_equal(i, Index([1, 2, 3.5]))
def test_equals_numeric(self):
i = Float64Index([1.0, 2.0])
assert i.equals(i)
assert i.identical(i)
i2 = Float64Index([1.0, 2.0])
assert i.equals(i2)
i = Float64Index([1.0, np.nan])
assert i.equals(i)
assert i.identical(i)
i2 = Float64Index([1.0, np.nan])
assert i.equals(i2)
@pytest.mark.parametrize(
"other",
(
Int64Index([1, 2]),
Index([1.0, 2.0], dtype=object),
Index([1, 2], dtype=object),
),
)
def test_equals_numeric_other_index_type(self, other):
i = Float64Index([1.0, 2.0])
assert i.equals(other)
assert other.equals(i)
@pytest.mark.parametrize(
"vals",
[
pd.date_range("2016-01-01", periods=3),
pd.timedelta_range("1 Day", periods=3),
],
)
def test_lookups_datetimelike_values(self, vals):
# If we have datetime64 or timedelta64 values, make sure they are
# wrappped correctly GH#31163
ser = pd.Series(vals, index=range(3, 6))
ser.index = ser.index.astype("float64")
expected = vals[1]
with tm.assert_produces_warning(FutureWarning):
result = ser.index.get_value(ser, 4.0)
assert isinstance(result, type(expected)) and result == expected
with tm.assert_produces_warning(FutureWarning):
result = ser.index.get_value(ser, 4)
assert isinstance(result, type(expected)) and result == expected
result = ser[4.0]
assert isinstance(result, type(expected)) and result == expected
result = ser[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.loc[4.0]
assert isinstance(result, type(expected)) and result == expected
result = ser.loc[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.at[4.0]
assert isinstance(result, type(expected)) and result == expected
# GH#31329 .at[4] should cast to 4.0, matching .loc behavior
result = ser.at[4]
assert isinstance(result, type(expected)) and result == expected
result = ser.iloc[1]
assert isinstance(result, type(expected)) and result == expected
result = ser.iat[1]
assert isinstance(result, type(expected)) and result == expected
def test_doesnt_contain_all_the_things(self):
i = Float64Index([np.nan])
assert not i.isin([0]).item()
assert not i.isin([1]).item()
assert i.isin([np.nan]).item()
def test_nan_multiple_containment(self):
i = Float64Index([1.0, np.nan])
tm.assert_numpy_array_equal(i.isin([1.0]), np.array([True, False]))
tm.assert_numpy_array_equal(i.isin([2.0, np.pi]), np.array([False, False]))
tm.assert_numpy_array_equal(i.isin([np.nan]), np.array([False, True]))
tm.assert_numpy_array_equal(i.isin([1.0, np.nan]), np.array([True, True]))
i = Float64Index([1.0, 2.0])
tm.assert_numpy_array_equal(i.isin([np.nan]), np.array([False, False]))
def test_fillna_float64(self):
# GH 11343
idx = Index([1.0, np.nan, 3.0], dtype=float, name="x")
# can't downcast
exp = Index([1.0, 0.1, 3.0], name="x")
tm.assert_index_equal(idx.fillna(0.1), exp)
# downcast
exp = Float64Index([1.0, 2.0, 3.0], name="x")
tm.assert_index_equal(idx.fillna(2), exp)
# object
exp = Index([1.0, "obj", 3.0], name="x")
tm.assert_index_equal(idx.fillna("obj"), exp)
class NumericInt(Numeric):
def test_view(self):
i = self._holder([], name="Foo")
i_view = i.view()
assert i_view.name == "Foo"
i_view = i.view(self._dtype)
tm.assert_index_equal(i, self._holder(i_view, name="Foo"))
i_view = i.view(self._holder)
tm.assert_index_equal(i, self._holder(i_view, name="Foo"))
def test_is_monotonic(self):
index = self._holder([1, 2, 3, 4])
assert index.is_monotonic is True
assert index.is_monotonic_increasing is True
assert index._is_strictly_monotonic_increasing is True
assert index.is_monotonic_decreasing is False
assert index._is_strictly_monotonic_decreasing is False
index = self._holder([4, 3, 2, 1])
assert index.is_monotonic is False
assert index._is_strictly_monotonic_increasing is False
assert index._is_strictly_monotonic_decreasing is True
index = self._holder([1])
assert index.is_monotonic is True
assert index.is_monotonic_increasing is True
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_increasing is True
assert index._is_strictly_monotonic_decreasing is True
def test_is_strictly_monotonic(self):
index = self._holder([1, 1, 2, 3])
assert index.is_monotonic_increasing is True
assert index._is_strictly_monotonic_increasing is False
index = self._holder([3, 2, 1, 1])
assert index.is_monotonic_decreasing is True
assert index._is_strictly_monotonic_decreasing is False
index = self._holder([1, 1])
assert index.is_monotonic_increasing
assert index.is_monotonic_decreasing
assert not index._is_strictly_monotonic_increasing
assert not index._is_strictly_monotonic_decreasing
def test_logical_compat(self):
idx = self.create_index()
assert idx.all() == idx.values.all()
assert idx.any() == idx.values.any()
def test_identical(self):
index = self.create_index()
i = Index(index.copy())
assert i.identical(index)
same_values_different_type = Index(i, dtype=object)
assert not i.identical(same_values_different_type)
i = index.copy(dtype=object)
i = i.rename("foo")
same_values = Index(i, dtype=object)
assert same_values.identical(i)
assert not i.identical(index)
assert Index(same_values, name="foo", dtype=object).identical(i)
assert not index.copy(dtype=object).identical(index.copy(dtype=self._dtype))
def test_union_noncomparable(self):
# corner case, non-Int64Index
index = self.create_index()
other = Index([datetime.now() + timedelta(i) for i in range(4)], dtype=object)
result = index.union(other)
expected = Index(np.concatenate((index, other)))
tm.assert_index_equal(result, expected)
result = other.union(index)
expected = Index(np.concatenate((other, index)))
tm.assert_index_equal(result, expected)
def test_cant_or_shouldnt_cast(self):
msg = (
"String dtype not supported, "
"you may need to explicitly cast to a numeric type"
)
# can't
data = ["foo", "bar", "baz"]
with pytest.raises(TypeError, match=msg):
self._holder(data)
# shouldn't
data = ["0", "1", "2"]
with pytest.raises(TypeError, match=msg):
self._holder(data)
def test_view_index(self):
index = self.create_index()
index.view(Index)
def test_prevent_casting(self):
index = self.create_index()
result = index.astype("O")
assert result.dtype == np.object_
class TestInt64Index(NumericInt):
_dtype = "int64"
_holder = Int64Index
@pytest.fixture(
params=[range(0, 20, 2), range(19, -1, -1)], ids=["index_inc", "index_dec"]
)
def index(self, request):
return Int64Index(request.param)
def create_index(self) -> Int64Index:
# return Int64Index(np.arange(5, dtype="int64"))
return Int64Index(range(0, 20, 2))
def test_constructor(self):
# pass list, coerce fine
index = Int64Index([-5, 0, 1, 2])
expected = Index([-5, 0, 1, 2], dtype=np.int64)
tm.assert_index_equal(index, expected)
# from iterable
index = Int64Index(iter([-5, 0, 1, 2]))
tm.assert_index_equal(index, expected)
# scalar raise Exception
msg = (
r"Int64Index\(\.\.\.\) must be called with a collection of some "
"kind, 5 was passed"
)
with pytest.raises(TypeError, match=msg):
Int64Index(5)
# copy
arr = index.values
new_index = Int64Index(arr, copy=True)
tm.assert_index_equal(new_index, index)
val = arr[0] + 3000
# this should not change index
arr[0] = val
assert new_index[0] != val
# interpret list-like
expected = Int64Index([5, 0])
for cls in [Index, Int64Index]:
for idx in [
cls([5, 0], dtype="int64"),
cls(np.array([5, 0]), dtype="int64"),
cls(Series([5, 0]), dtype="int64"),
]:
tm.assert_index_equal(idx, expected)
def test_constructor_corner(self):
arr = np.array([1, 2, 3, 4], dtype=object)
index = Int64Index(arr)
assert index.values.dtype == np.int64
tm.assert_index_equal(index, Index(arr))
# preventing casting
arr = np.array([1, "2", 3, "4"], dtype=object)
with pytest.raises(TypeError, match="casting"):
Int64Index(arr)
arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1]
with pytest.raises(TypeError, match="casting"):
Int64Index(arr_with_floats)
def test_constructor_coercion_signed_to_unsigned(self, uint_dtype):
# see gh-15832
msg = "Trying to coerce negative values to unsigned integers"
with pytest.raises(OverflowError, match=msg):
Index([-1], dtype=uint_dtype)
def test_constructor_unwraps_index(self):
idx = pd.Index([1, 2])
result = pd.Int64Index(idx)
expected = np.array([1, 2], dtype="int64")
tm.assert_numpy_array_equal(result._data, expected)
def test_coerce_list(self):
# coerce things
arr = Index([1, 2, 3, 4])
assert isinstance(arr, Int64Index)
# but not if explicit dtype passed
arr = Index([1, 2, 3, 4], dtype=object)
assert isinstance(arr, Index)
def test_intersection(self):
index = self.create_index()
other = Index([1, 2, 3, 4, 5])
result = index.intersection(other)
expected = Index(np.sort(np.intersect1d(index.values, other.values)))
tm.assert_index_equal(result, expected)
result = other.intersection(index)
expected = Index(
np.sort(np.asarray(np.intersect1d(index.values, other.values)))
)
tm.assert_index_equal(result, expected)
class TestUInt64Index(NumericInt):
_dtype = "uint64"
_holder = UInt64Index
@pytest.fixture(
params=[
[2 ** 63, 2 ** 63 + 10, 2 ** 63 + 15, 2 ** 63 + 20, 2 ** 63 + 25],
[2 ** 63 + 25, 2 ** 63 + 20, 2 ** 63 + 15, 2 ** 63 + 10, 2 ** 63],
],
ids=["index_inc", "index_dec"],
)
def index(self, request):
return UInt64Index(request.param)
@pytest.fixture
def index_large(self):
# large values used in TestUInt64Index where no compat needed with Int64/Float64
large = [2 ** 63, 2 ** 63 + 10, 2 ** 63 + 15, 2 ** 63 + 20, 2 ** 63 + 25]
return UInt64Index(large)
def create_index(self) -> UInt64Index:
# compat with shared Int64/Float64 tests; use index_large for UInt64 only tests
return UInt64Index(np.arange(5, dtype="uint64"))
def test_constructor(self):
idx = UInt64Index([1, 2, 3])
res = Index([1, 2, 3], dtype=np.uint64)
tm.assert_index_equal(res, idx)
idx = UInt64Index([1, 2 ** 63])
res = Index([1, 2 ** 63], dtype=np.uint64)
tm.assert_index_equal(res, idx)
idx = UInt64Index([1, 2 ** 63])
res = Index([1, 2 ** 63])
tm.assert_index_equal(res, idx)
idx = Index([-1, 2 ** 63], dtype=object)
res = Index(np.array([-1, 2 ** 63], dtype=object))
tm.assert_index_equal(res, idx)
# https://github.com/pandas-dev/pandas/issues/29526
idx = UInt64Index([1, 2 ** 63 + 1], dtype=np.uint64)
res = Index([1, 2 ** 63 + 1], dtype=np.uint64)
tm.assert_index_equal(res, idx)
def test_intersection(self, index_large):
other = Index([2 ** 63, 2 ** 63 + 5, 2 ** 63 + 10, 2 ** 63 + 15, 2 ** 63 + 20])
result = index_large.intersection(other)
expected = Index(np.sort(np.intersect1d(index_large.values, other.values)))
tm.assert_index_equal(result, expected)
result = other.intersection(index_large)
expected = Index(
np.sort(np.asarray(np.intersect1d(index_large.values, other.values)))
)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("dtype", ["int64", "uint64"])
def test_int_float_union_dtype(dtype):
# https://github.com/pandas-dev/pandas/issues/26778
# [u]int | float -> float
index = pd.Index([0, 2, 3], dtype=dtype)
other = pd.Float64Index([0.5, 1.5])
expected = pd.Float64Index([0.0, 0.5, 1.5, 2.0, 3.0])
result = index.union(other)
tm.assert_index_equal(result, expected)
result = other.union(index)
tm.assert_index_equal(result, expected)
def test_range_float_union_dtype():
# https://github.com/pandas-dev/pandas/issues/26778
index = pd.RangeIndex(start=0, stop=3)
other = pd.Float64Index([0.5, 1.5])
result = index.union(other)
expected = pd.Float64Index([0.0, 0.5, 1, 1.5, 2.0])
tm.assert_index_equal(result, expected)
result = other.union(index)
tm.assert_index_equal(result, expected)
def test_uint_index_does_not_convert_to_float64():
# https://github.com/pandas-dev/pandas/issues/28279
# https://github.com/pandas-dev/pandas/issues/28023
series = pd.Series(
[0, 1, 2, 3, 4, 5],
index=[
7606741985629028552,
17876870360202815256,
17876870360202815256,
13106359306506049338,
8991270399732411471,
8991270399732411472,
],
)
result = series.loc[[7606741985629028552, 17876870360202815256]]
expected = UInt64Index(
[7606741985629028552, 17876870360202815256, 17876870360202815256],
dtype="uint64",
)
tm.assert_index_equal(result.index, expected)
tm.assert_equal(result, series[:3])
def test_float64_index_equals():
# https://github.com/pandas-dev/pandas/issues/35217
float_index = pd.Index([1.0, 2, 3])
string_index = pd.Index(["1", "2", "3"])
result = float_index.equals(string_index)
assert result is False
result = string_index.equals(float_index)
assert result is False
def test_float64_index_difference():
# https://github.com/pandas-dev/pandas/issues/35217
float_index = pd.Index([1.0, 2, 3])
string_index = pd.Index(["1", "2", "3"])
result = float_index.difference(string_index)
tm.assert_index_equal(result, float_index)
result = string_index.difference(float_index)
tm.assert_index_equal(result, string_index)