1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/frame/test_timezones.py

169 lines
6.0 KiB

"""
Tests for DataFrame timezone-related methods
"""
import numpy as np
import pytest
import pytz
from pandas.core.dtypes.dtypes import DatetimeTZDtype
import pandas as pd
from pandas import DataFrame, Series
import pandas._testing as tm
from pandas.core.indexes.datetimes import date_range
class TestDataFrameTimezones:
def test_frame_values_with_tz(self):
tz = "US/Central"
df = DataFrame({"A": date_range("2000", periods=4, tz=tz)})
result = df.values
expected = np.array(
[
[pd.Timestamp("2000-01-01", tz=tz)],
[pd.Timestamp("2000-01-02", tz=tz)],
[pd.Timestamp("2000-01-03", tz=tz)],
[pd.Timestamp("2000-01-04", tz=tz)],
]
)
tm.assert_numpy_array_equal(result, expected)
# two columns, homogenous
df = df.assign(B=df.A)
result = df.values
expected = np.concatenate([expected, expected], axis=1)
tm.assert_numpy_array_equal(result, expected)
# three columns, heterogeneous
est = "US/Eastern"
df = df.assign(C=df.A.dt.tz_convert(est))
new = np.array(
[
[pd.Timestamp("2000-01-01T01:00:00", tz=est)],
[pd.Timestamp("2000-01-02T01:00:00", tz=est)],
[pd.Timestamp("2000-01-03T01:00:00", tz=est)],
[pd.Timestamp("2000-01-04T01:00:00", tz=est)],
]
)
expected = np.concatenate([expected, new], axis=1)
result = df.values
tm.assert_numpy_array_equal(result, expected)
def test_frame_join_tzaware(self):
test1 = DataFrame(
np.zeros((6, 3)),
index=date_range(
"2012-11-15 00:00:00", periods=6, freq="100L", tz="US/Central"
),
)
test2 = DataFrame(
np.zeros((3, 3)),
index=date_range(
"2012-11-15 00:00:00", periods=3, freq="250L", tz="US/Central"
),
columns=range(3, 6),
)
result = test1.join(test2, how="outer")
ex_index = test1.index.union(test2.index)
tm.assert_index_equal(result.index, ex_index)
assert result.index.tz.zone == "US/Central"
def test_frame_align_aware(self):
idx1 = date_range("2001", periods=5, freq="H", tz="US/Eastern")
idx2 = date_range("2001", periods=5, freq="2H", tz="US/Eastern")
df1 = DataFrame(np.random.randn(len(idx1), 3), idx1)
df2 = DataFrame(np.random.randn(len(idx2), 3), idx2)
new1, new2 = df1.align(df2)
assert df1.index.tz == new1.index.tz
assert df2.index.tz == new2.index.tz
# different timezones convert to UTC
# frame with frame
df1_central = df1.tz_convert("US/Central")
new1, new2 = df1.align(df1_central)
assert new1.index.tz == pytz.UTC
assert new2.index.tz == pytz.UTC
# frame with Series
new1, new2 = df1.align(df1_central[0], axis=0)
assert new1.index.tz == pytz.UTC
assert new2.index.tz == pytz.UTC
df1[0].align(df1_central, axis=0)
assert new1.index.tz == pytz.UTC
assert new2.index.tz == pytz.UTC
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_frame_no_datetime64_dtype(self, tz):
# after GH#7822
# these retain the timezones on dict construction
dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI")
dr_tz = dr.tz_localize(tz)
df = DataFrame({"A": "foo", "B": dr_tz}, index=dr)
tz_expected = DatetimeTZDtype("ns", dr_tz.tzinfo)
assert df["B"].dtype == tz_expected
# GH#2810 (with timezones)
datetimes_naive = [ts.to_pydatetime() for ts in dr]
datetimes_with_tz = [ts.to_pydatetime() for ts in dr_tz]
df = DataFrame({"dr": dr})
df["dr_tz"] = dr_tz
df["datetimes_naive"] = datetimes_naive
df["datetimes_with_tz"] = datetimes_with_tz
result = df.dtypes
expected = Series(
[
np.dtype("datetime64[ns]"),
DatetimeTZDtype(tz=tz),
np.dtype("datetime64[ns]"),
DatetimeTZDtype(tz=tz),
],
index=["dr", "dr_tz", "datetimes_naive", "datetimes_with_tz"],
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"])
def test_frame_reset_index(self, tz):
dr = date_range("2012-06-02", periods=10, tz=tz)
df = DataFrame(np.random.randn(len(dr)), dr)
roundtripped = df.reset_index().set_index("index")
xp = df.index.tz
rs = roundtripped.index.tz
assert xp == rs
@pytest.mark.parametrize("tz", [None, "America/New_York"])
def test_boolean_compare_transpose_tzindex_with_dst(self, tz):
# GH 19970
idx = date_range("20161101", "20161130", freq="4H", tz=tz)
df = DataFrame({"a": range(len(idx)), "b": range(len(idx))}, index=idx)
result = df.T == df.T
expected = DataFrame(True, index=list("ab"), columns=idx)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("copy", [True, False])
@pytest.mark.parametrize(
"method, tz", [["tz_localize", None], ["tz_convert", "Europe/Berlin"]]
)
def test_tz_localize_convert_copy_inplace_mutate(self, copy, method, tz):
# GH 6326
result = DataFrame(
np.arange(0, 5), index=date_range("20131027", periods=5, freq="1H", tz=tz)
)
getattr(result, method)("UTC", copy=copy)
expected = DataFrame(
np.arange(0, 5), index=date_range("20131027", periods=5, freq="1H", tz=tz)
)
tm.assert_frame_equal(result, expected)
def test_constructor_data_aware_dtype_naive(self, tz_aware_fixture):
# GH 25843
tz = tz_aware_fixture
result = DataFrame({"d": [pd.Timestamp("2019", tz=tz)]}, dtype="datetime64[ns]")
expected = DataFrame({"d": [pd.Timestamp("2019")]})
tm.assert_frame_equal(result, expected)