Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.1 KiB
136 lines
4.1 KiB
4 years ago
|
"""
|
||
|
Tests for DataFrame cumulative operations
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
tests.series.test_cumulative
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas import DataFrame, Series
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestDataFrameCumulativeOps:
|
||
|
# ---------------------------------------------------------------------
|
||
|
# Cumulative Operations - cumsum, cummax, ...
|
||
|
|
||
|
def test_cumsum_corner(self):
|
||
|
dm = DataFrame(np.arange(20).reshape(4, 5), index=range(4), columns=range(5))
|
||
|
# TODO(wesm): do something with this?
|
||
|
result = dm.cumsum() # noqa
|
||
|
|
||
|
def test_cumsum(self, datetime_frame):
|
||
|
datetime_frame.iloc[5:10, 0] = np.nan
|
||
|
datetime_frame.iloc[10:15, 1] = np.nan
|
||
|
datetime_frame.iloc[15:, 2] = np.nan
|
||
|
|
||
|
# axis = 0
|
||
|
cumsum = datetime_frame.cumsum()
|
||
|
expected = datetime_frame.apply(Series.cumsum)
|
||
|
tm.assert_frame_equal(cumsum, expected)
|
||
|
|
||
|
# axis = 1
|
||
|
cumsum = datetime_frame.cumsum(axis=1)
|
||
|
expected = datetime_frame.apply(Series.cumsum, axis=1)
|
||
|
tm.assert_frame_equal(cumsum, expected)
|
||
|
|
||
|
# works
|
||
|
df = DataFrame({"A": np.arange(20)}, index=np.arange(20))
|
||
|
df.cumsum()
|
||
|
|
||
|
# fix issue
|
||
|
cumsum_xs = datetime_frame.cumsum(axis=1)
|
||
|
assert np.shape(cumsum_xs) == np.shape(datetime_frame)
|
||
|
|
||
|
def test_cumprod(self, datetime_frame):
|
||
|
datetime_frame.iloc[5:10, 0] = np.nan
|
||
|
datetime_frame.iloc[10:15, 1] = np.nan
|
||
|
datetime_frame.iloc[15:, 2] = np.nan
|
||
|
|
||
|
# axis = 0
|
||
|
cumprod = datetime_frame.cumprod()
|
||
|
expected = datetime_frame.apply(Series.cumprod)
|
||
|
tm.assert_frame_equal(cumprod, expected)
|
||
|
|
||
|
# axis = 1
|
||
|
cumprod = datetime_frame.cumprod(axis=1)
|
||
|
expected = datetime_frame.apply(Series.cumprod, axis=1)
|
||
|
tm.assert_frame_equal(cumprod, expected)
|
||
|
|
||
|
# fix issue
|
||
|
cumprod_xs = datetime_frame.cumprod(axis=1)
|
||
|
assert np.shape(cumprod_xs) == np.shape(datetime_frame)
|
||
|
|
||
|
# ints
|
||
|
df = datetime_frame.fillna(0).astype(int)
|
||
|
df.cumprod(0)
|
||
|
df.cumprod(1)
|
||
|
|
||
|
# ints32
|
||
|
df = datetime_frame.fillna(0).astype(np.int32)
|
||
|
df.cumprod(0)
|
||
|
df.cumprod(1)
|
||
|
|
||
|
def test_cummin(self, datetime_frame):
|
||
|
datetime_frame.iloc[5:10, 0] = np.nan
|
||
|
datetime_frame.iloc[10:15, 1] = np.nan
|
||
|
datetime_frame.iloc[15:, 2] = np.nan
|
||
|
|
||
|
# axis = 0
|
||
|
cummin = datetime_frame.cummin()
|
||
|
expected = datetime_frame.apply(Series.cummin)
|
||
|
tm.assert_frame_equal(cummin, expected)
|
||
|
|
||
|
# axis = 1
|
||
|
cummin = datetime_frame.cummin(axis=1)
|
||
|
expected = datetime_frame.apply(Series.cummin, axis=1)
|
||
|
tm.assert_frame_equal(cummin, expected)
|
||
|
|
||
|
# it works
|
||
|
df = DataFrame({"A": np.arange(20)}, index=np.arange(20))
|
||
|
df.cummin()
|
||
|
|
||
|
# fix issue
|
||
|
cummin_xs = datetime_frame.cummin(axis=1)
|
||
|
assert np.shape(cummin_xs) == np.shape(datetime_frame)
|
||
|
|
||
|
def test_cummax(self, datetime_frame):
|
||
|
datetime_frame.iloc[5:10, 0] = np.nan
|
||
|
datetime_frame.iloc[10:15, 1] = np.nan
|
||
|
datetime_frame.iloc[15:, 2] = np.nan
|
||
|
|
||
|
# axis = 0
|
||
|
cummax = datetime_frame.cummax()
|
||
|
expected = datetime_frame.apply(Series.cummax)
|
||
|
tm.assert_frame_equal(cummax, expected)
|
||
|
|
||
|
# axis = 1
|
||
|
cummax = datetime_frame.cummax(axis=1)
|
||
|
expected = datetime_frame.apply(Series.cummax, axis=1)
|
||
|
tm.assert_frame_equal(cummax, expected)
|
||
|
|
||
|
# it works
|
||
|
df = DataFrame({"A": np.arange(20)}, index=np.arange(20))
|
||
|
df.cummax()
|
||
|
|
||
|
# fix issue
|
||
|
cummax_xs = datetime_frame.cummax(axis=1)
|
||
|
assert np.shape(cummax_xs) == np.shape(datetime_frame)
|
||
|
|
||
|
def test_cumulative_ops_preserve_dtypes(self):
|
||
|
# GH#19296 dont incorrectly upcast to object
|
||
|
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3.0], "C": [True, False, False]})
|
||
|
|
||
|
result = df.cumsum()
|
||
|
|
||
|
expected = DataFrame(
|
||
|
{
|
||
|
"A": Series([1, 3, 6], dtype=np.int64),
|
||
|
"B": Series([1, 3, 6], dtype=np.float64),
|
||
|
"C": df["C"].cumsum(),
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|