1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/frame/test_cumulative.py

136 lines
4.1 KiB

"""
Tests for DataFrame cumulative operations
See also
--------
tests.series.test_cumulative
"""
import numpy as np
from pandas import DataFrame, Series
import pandas._testing as tm
class TestDataFrameCumulativeOps:
# ---------------------------------------------------------------------
# Cumulative Operations - cumsum, cummax, ...
def test_cumsum_corner(self):
dm = DataFrame(np.arange(20).reshape(4, 5), index=range(4), columns=range(5))
# TODO(wesm): do something with this?
result = dm.cumsum() # noqa
def test_cumsum(self, datetime_frame):
datetime_frame.iloc[5:10, 0] = np.nan
datetime_frame.iloc[10:15, 1] = np.nan
datetime_frame.iloc[15:, 2] = np.nan
# axis = 0
cumsum = datetime_frame.cumsum()
expected = datetime_frame.apply(Series.cumsum)
tm.assert_frame_equal(cumsum, expected)
# axis = 1
cumsum = datetime_frame.cumsum(axis=1)
expected = datetime_frame.apply(Series.cumsum, axis=1)
tm.assert_frame_equal(cumsum, expected)
# works
df = DataFrame({"A": np.arange(20)}, index=np.arange(20))
df.cumsum()
# fix issue
cumsum_xs = datetime_frame.cumsum(axis=1)
assert np.shape(cumsum_xs) == np.shape(datetime_frame)
def test_cumprod(self, datetime_frame):
datetime_frame.iloc[5:10, 0] = np.nan
datetime_frame.iloc[10:15, 1] = np.nan
datetime_frame.iloc[15:, 2] = np.nan
# axis = 0
cumprod = datetime_frame.cumprod()
expected = datetime_frame.apply(Series.cumprod)
tm.assert_frame_equal(cumprod, expected)
# axis = 1
cumprod = datetime_frame.cumprod(axis=1)
expected = datetime_frame.apply(Series.cumprod, axis=1)
tm.assert_frame_equal(cumprod, expected)
# fix issue
cumprod_xs = datetime_frame.cumprod(axis=1)
assert np.shape(cumprod_xs) == np.shape(datetime_frame)
# ints
df = datetime_frame.fillna(0).astype(int)
df.cumprod(0)
df.cumprod(1)
# ints32
df = datetime_frame.fillna(0).astype(np.int32)
df.cumprod(0)
df.cumprod(1)
def test_cummin(self, datetime_frame):
datetime_frame.iloc[5:10, 0] = np.nan
datetime_frame.iloc[10:15, 1] = np.nan
datetime_frame.iloc[15:, 2] = np.nan
# axis = 0
cummin = datetime_frame.cummin()
expected = datetime_frame.apply(Series.cummin)
tm.assert_frame_equal(cummin, expected)
# axis = 1
cummin = datetime_frame.cummin(axis=1)
expected = datetime_frame.apply(Series.cummin, axis=1)
tm.assert_frame_equal(cummin, expected)
# it works
df = DataFrame({"A": np.arange(20)}, index=np.arange(20))
df.cummin()
# fix issue
cummin_xs = datetime_frame.cummin(axis=1)
assert np.shape(cummin_xs) == np.shape(datetime_frame)
def test_cummax(self, datetime_frame):
datetime_frame.iloc[5:10, 0] = np.nan
datetime_frame.iloc[10:15, 1] = np.nan
datetime_frame.iloc[15:, 2] = np.nan
# axis = 0
cummax = datetime_frame.cummax()
expected = datetime_frame.apply(Series.cummax)
tm.assert_frame_equal(cummax, expected)
# axis = 1
cummax = datetime_frame.cummax(axis=1)
expected = datetime_frame.apply(Series.cummax, axis=1)
tm.assert_frame_equal(cummax, expected)
# it works
df = DataFrame({"A": np.arange(20)}, index=np.arange(20))
df.cummax()
# fix issue
cummax_xs = datetime_frame.cummax(axis=1)
assert np.shape(cummax_xs) == np.shape(datetime_frame)
def test_cumulative_ops_preserve_dtypes(self):
# GH#19296 dont incorrectly upcast to object
df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3.0], "C": [True, False, False]})
result = df.cumsum()
expected = DataFrame(
{
"A": Series([1, 3, 6], dtype=np.int64),
"B": Series([1, 3, 6], dtype=np.float64),
"C": df["C"].cumsum(),
}
)
tm.assert_frame_equal(result, expected)