1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/extension/test_interval.py

167 lines
4.1 KiB

"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
"""
import numpy as np
import pytest
from pandas.core.dtypes.dtypes import IntervalDtype
from pandas import Interval
from pandas.core.arrays import IntervalArray
from pandas.tests.extension import base
def make_data():
N = 100
left = np.random.uniform(size=N).cumsum()
right = left + np.random.uniform(size=N)
return [Interval(l, r) for l, r in zip(left, right)]
@pytest.fixture
def dtype():
return IntervalDtype()
@pytest.fixture
def data():
"""Length-100 PeriodArray for semantics test."""
return IntervalArray(make_data())
@pytest.fixture
def data_missing():
"""Length 2 array with [NA, Valid]"""
return IntervalArray.from_tuples([None, (0, 1)])
@pytest.fixture
def data_for_sorting():
return IntervalArray.from_tuples([(1, 2), (2, 3), (0, 1)])
@pytest.fixture
def data_missing_for_sorting():
return IntervalArray.from_tuples([(1, 2), None, (0, 1)])
@pytest.fixture
def na_value():
return np.nan
@pytest.fixture
def data_for_grouping():
a = (0, 1)
b = (1, 2)
c = (2, 3)
return IntervalArray.from_tuples([b, b, None, None, a, a, b, c])
class BaseInterval:
pass
class TestDtype(BaseInterval, base.BaseDtypeTests):
pass
class TestCasting(BaseInterval, base.BaseCastingTests):
pass
class TestConstructors(BaseInterval, base.BaseConstructorsTests):
pass
class TestGetitem(BaseInterval, base.BaseGetitemTests):
pass
class TestGrouping(BaseInterval, base.BaseGroupbyTests):
pass
class TestInterface(BaseInterval, base.BaseInterfaceTests):
def test_view(self, data):
# __setitem__ incorrectly makes a copy (GH#27147), so we only
# have a smoke-test
data.view()
class TestReduce(base.BaseNoReduceTests):
pass
class TestMethods(BaseInterval, base.BaseMethodsTests):
@pytest.mark.skip(reason="addition is not defined for intervals")
def test_combine_add(self, data_repeated):
pass
@pytest.mark.skip(reason="Not Applicable")
def test_fillna_length_mismatch(self, data_missing):
pass
class TestMissing(BaseInterval, base.BaseMissingTests):
# Index.fillna only accepts scalar `value`, so we have to skip all
# non-scalar fill tests.
unsupported_fill = pytest.mark.skip("Unsupported fillna option.")
@unsupported_fill
def test_fillna_limit_pad(self):
pass
@unsupported_fill
def test_fillna_series_method(self):
pass
@unsupported_fill
def test_fillna_limit_backfill(self):
pass
@unsupported_fill
def test_fillna_series(self):
pass
def test_non_scalar_raises(self, data_missing):
msg = "Got a 'list' instead."
with pytest.raises(TypeError, match=msg):
data_missing.fillna([1, 1])
class TestReshaping(BaseInterval, base.BaseReshapingTests):
pass
class TestSetitem(BaseInterval, base.BaseSetitemTests):
@pytest.mark.xfail(reason="GH#27147 setitem changes underlying index")
def test_setitem_preserves_views(self, data):
super().test_setitem_preserves_views(data)
class TestPrinting(BaseInterval, base.BasePrintingTests):
@pytest.mark.skip(reason="custom repr")
def test_array_repr(self, data, size):
pass
class TestParsing(BaseInterval, base.BaseParsingTests):
@pytest.mark.parametrize("engine", ["c", "python"])
def test_EA_types(self, engine, data):
expected_msg = r".*must implement _from_sequence_of_strings.*"
with pytest.raises(NotImplementedError, match=expected_msg):
super().test_EA_types(engine, data)