1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/extension/test_boolean.py

390 lines
13 KiB

"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite, and should contain no other tests.
The test suite for the full functionality of the array is located in
`pandas/tests/arrays/`.
The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).
Additional tests should either be added to one of the BaseExtensionTests
classes (if they are relevant for the extension interface for all dtypes), or
be added to the array-specific tests in `pandas/tests/arrays/`.
"""
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.boolean import BooleanDtype
from pandas.tests.extension import base
def make_data():
return [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False]
@pytest.fixture
def dtype():
return BooleanDtype()
@pytest.fixture
def data(dtype):
return pd.array(make_data(), dtype=dtype)
@pytest.fixture
def data_for_twos(dtype):
return pd.array(np.ones(100), dtype=dtype)
@pytest.fixture
def data_missing(dtype):
return pd.array([np.nan, True], dtype=dtype)
@pytest.fixture
def data_for_sorting(dtype):
return pd.array([True, True, False], dtype=dtype)
@pytest.fixture
def data_missing_for_sorting(dtype):
return pd.array([True, np.nan, False], dtype=dtype)
@pytest.fixture
def na_cmp():
# we are pd.NA
return lambda x, y: x is pd.NA and y is pd.NA
@pytest.fixture
def na_value():
return pd.NA
@pytest.fixture
def data_for_grouping(dtype):
b = True
a = False
na = np.nan
return pd.array([b, b, na, na, a, a, b], dtype=dtype)
class TestDtype(base.BaseDtypeTests):
pass
class TestInterface(base.BaseInterfaceTests):
pass
class TestConstructors(base.BaseConstructorsTests):
pass
class TestGetitem(base.BaseGetitemTests):
pass
class TestSetitem(base.BaseSetitemTests):
pass
class TestMissing(base.BaseMissingTests):
pass
class TestArithmeticOps(base.BaseArithmeticOpsTests):
implements = {"__sub__", "__rsub__"}
def check_opname(self, s, op_name, other, exc=None):
# overwriting to indicate ops don't raise an error
super().check_opname(s, op_name, other, exc=None)
def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
if exc is None:
if op_name in self.implements:
msg = r"numpy boolean subtract"
with pytest.raises(TypeError, match=msg):
op(s, other)
return
result = op(s, other)
expected = s.combine(other, op)
if op_name in (
"__floordiv__",
"__rfloordiv__",
"__pow__",
"__rpow__",
"__mod__",
"__rmod__",
):
# combine keeps boolean type
expected = expected.astype("Int8")
elif op_name in ("__truediv__", "__rtruediv__"):
# combine with bools does not generate the correct result
# (numpy behaviour for div is to regard the bools as numeric)
expected = s.astype(float).combine(other, op)
if op_name == "__rpow__":
# for rpow, combine does not propagate NaN
expected[result.isna()] = np.nan
self.assert_series_equal(result, expected)
else:
with pytest.raises(exc):
op(s, other)
def _check_divmod_op(self, s, op, other, exc=None):
# override to not raise an error
super()._check_divmod_op(s, op, other, None)
@pytest.mark.skip(reason="BooleanArray does not error on ops")
def test_error(self, data, all_arithmetic_operators):
# other specific errors tested in the boolean array specific tests
pass
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
# frame & scalar
op_name = all_arithmetic_operators
if op_name not in self.implements:
mark = pytest.mark.xfail(reason="_reduce needs implementation")
request.node.add_marker(mark)
super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
class TestComparisonOps(base.BaseComparisonOpsTests):
def check_opname(self, s, op_name, other, exc=None):
# overwriting to indicate ops don't raise an error
super().check_opname(s, op_name, other, exc=None)
def _compare_other(self, s, data, op_name, other):
self.check_opname(s, op_name, other)
@pytest.mark.skip(reason="Tested in tests/arrays/test_boolean.py")
def test_compare_scalar(self, data, all_compare_operators):
pass
@pytest.mark.skip(reason="Tested in tests/arrays/test_boolean.py")
def test_compare_array(self, data, all_compare_operators):
pass
class TestReshaping(base.BaseReshapingTests):
pass
class TestMethods(base.BaseMethodsTests):
@pytest.mark.parametrize("na_sentinel", [-1, -2])
def test_factorize(self, data_for_grouping, na_sentinel):
# override because we only have 2 unique values
labels, uniques = pd.factorize(data_for_grouping, na_sentinel=na_sentinel)
expected_labels = np.array(
[0, 0, na_sentinel, na_sentinel, 1, 1, 0], dtype=np.intp
)
expected_uniques = data_for_grouping.take([0, 4])
tm.assert_numpy_array_equal(labels, expected_labels)
self.assert_extension_array_equal(uniques, expected_uniques)
def test_combine_le(self, data_repeated):
# override because expected needs to be boolean instead of bool dtype
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
expected = pd.Series(
[a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))],
dtype="boolean",
)
self.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 <= x2)
expected = pd.Series([a <= val for a in list(orig_data1)], dtype="boolean")
self.assert_series_equal(result, expected)
def test_searchsorted(self, data_for_sorting, as_series):
# override because we only have 2 unique values
data_for_sorting = pd.array([True, False], dtype="boolean")
b, a = data_for_sorting
arr = type(data_for_sorting)._from_sequence([a, b])
if as_series:
arr = pd.Series(arr)
assert arr.searchsorted(a) == 0
assert arr.searchsorted(a, side="right") == 1
assert arr.searchsorted(b) == 1
assert arr.searchsorted(b, side="right") == 2
result = arr.searchsorted(arr.take([0, 1]))
expected = np.array([0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# sorter
sorter = np.array([1, 0])
assert data_for_sorting.searchsorted(a, sorter=sorter) == 0
@pytest.mark.skip(reason="uses nullable integer")
def test_value_counts(self, all_data, dropna):
return super().test_value_counts(all_data, dropna)
def test_argmin_argmax(self, data_for_sorting, data_missing_for_sorting):
# override because there are only 2 unique values
# data_for_sorting -> [B, C, A] with A < B < C -> here True, True, False
assert data_for_sorting.argmax() == 0
assert data_for_sorting.argmin() == 2
# with repeated values -> first occurence
data = data_for_sorting.take([2, 0, 0, 1, 1, 2])
assert data.argmax() == 1
assert data.argmin() == 0
# with missing values
# data_missing_for_sorting -> [B, NA, A] with A < B and NA missing.
assert data_missing_for_sorting.argmax() == 0
assert data_missing_for_sorting.argmin() == 2
class TestCasting(base.BaseCastingTests):
pass
class TestGroupby(base.BaseGroupbyTests):
"""
Groupby-specific tests are overridden because boolean only has 2
unique values, base tests uses 3 groups.
"""
def test_grouping_grouper(self, data_for_grouping):
df = pd.DataFrame(
{"A": ["B", "B", None, None, "A", "A", "B"], "B": data_for_grouping}
)
gr1 = df.groupby("A").grouper.groupings[0]
gr2 = df.groupby("B").grouper.groupings[0]
tm.assert_numpy_array_equal(gr1.grouper, df.A.values)
tm.assert_extension_array_equal(gr2.grouper, data_for_grouping)
@pytest.mark.parametrize("as_index", [True, False])
def test_groupby_extension_agg(self, as_index, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1], "B": data_for_grouping})
result = df.groupby("B", as_index=as_index).A.mean()
_, index = pd.factorize(data_for_grouping, sort=True)
index = pd.Index(index, name="B")
expected = pd.Series([3, 1], index=index, name="A")
if as_index:
self.assert_series_equal(result, expected)
else:
expected = expected.reset_index()
self.assert_frame_equal(result, expected)
def test_groupby_extension_no_sort(self, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1], "B": data_for_grouping})
result = df.groupby("B", sort=False).A.mean()
_, index = pd.factorize(data_for_grouping, sort=False)
index = pd.Index(index, name="B")
expected = pd.Series([1, 3], index=index, name="A")
self.assert_series_equal(result, expected)
def test_groupby_extension_transform(self, data_for_grouping):
valid = data_for_grouping[~data_for_grouping.isna()]
df = pd.DataFrame({"A": [1, 1, 3, 3, 1], "B": valid})
result = df.groupby("B").A.transform(len)
expected = pd.Series([3, 3, 2, 2, 3], name="A")
self.assert_series_equal(result, expected)
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1], "B": data_for_grouping})
df.groupby("B").apply(groupby_apply_op)
df.groupby("B").A.apply(groupby_apply_op)
df.groupby("A").apply(groupby_apply_op)
df.groupby("A").B.apply(groupby_apply_op)
def test_groupby_apply_identity(self, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1], "B": data_for_grouping})
result = df.groupby("A").B.apply(lambda x: x.array)
expected = pd.Series(
[
df.B.iloc[[0, 1, 6]].array,
df.B.iloc[[2, 3]].array,
df.B.iloc[[4, 5]].array,
],
index=pd.Index([1, 2, 3], name="A"),
name="B",
)
self.assert_series_equal(result, expected)
def test_in_numeric_groupby(self, data_for_grouping):
df = pd.DataFrame(
{
"A": [1, 1, 2, 2, 3, 3, 1],
"B": data_for_grouping,
"C": [1, 1, 1, 1, 1, 1, 1],
}
)
result = df.groupby("A").sum().columns
if data_for_grouping.dtype._is_numeric:
expected = pd.Index(["B", "C"])
else:
expected = pd.Index(["C"])
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("min_count", [0, 10])
def test_groupby_sum_mincount(self, data_for_grouping, min_count):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1], "B": data_for_grouping})
result = df.groupby("A").sum(min_count=min_count)
if min_count == 0:
expected = pd.DataFrame(
{"B": pd.array([3, 0, 0], dtype="Int64")},
index=pd.Index([1, 2, 3], name="A"),
)
tm.assert_frame_equal(result, expected)
else:
expected = pd.DataFrame(
{"B": pd.array([pd.NA] * 3, dtype="Int64")},
index=pd.Index([1, 2, 3], name="A"),
)
tm.assert_frame_equal(result, expected)
class TestNumericReduce(base.BaseNumericReduceTests):
def check_reduce(self, s, op_name, skipna):
result = getattr(s, op_name)(skipna=skipna)
expected = getattr(s.astype("float64"), op_name)(skipna=skipna)
# override parent function to cast to bool for min/max
if np.isnan(expected):
expected = pd.NA
elif op_name in ("min", "max"):
expected = bool(expected)
tm.assert_almost_equal(result, expected)
class TestBooleanReduce(base.BaseBooleanReduceTests):
pass
class TestPrinting(base.BasePrintingTests):
pass
class TestUnaryOps(base.BaseUnaryOpsTests):
pass
class TestParsing(base.BaseParsingTests):
pass