Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
6.1 KiB
208 lines
6.1 KiB
4 years ago
|
import decimal
|
||
|
import numbers
|
||
|
import random
|
||
|
import sys
|
||
|
from typing import Type
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas.core.dtypes.base import ExtensionDtype
|
||
|
from pandas.core.dtypes.common import pandas_dtype
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas.api.extensions import no_default, register_extension_dtype
|
||
|
from pandas.core.arrays import ExtensionArray, ExtensionScalarOpsMixin
|
||
|
from pandas.core.indexers import check_array_indexer
|
||
|
|
||
|
|
||
|
@register_extension_dtype
|
||
|
class DecimalDtype(ExtensionDtype):
|
||
|
type = decimal.Decimal
|
||
|
name = "decimal"
|
||
|
na_value = decimal.Decimal("NaN")
|
||
|
_metadata = ("context",)
|
||
|
|
||
|
def __init__(self, context=None):
|
||
|
self.context = context or decimal.getcontext()
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
return f"DecimalDtype(context={self.context})"
|
||
|
|
||
|
@classmethod
|
||
|
def construct_array_type(cls) -> Type["DecimalArray"]:
|
||
|
"""
|
||
|
Return the array type associated with this dtype.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
type
|
||
|
"""
|
||
|
return DecimalArray
|
||
|
|
||
|
@property
|
||
|
def _is_numeric(self) -> bool:
|
||
|
return True
|
||
|
|
||
|
|
||
|
class DecimalArray(ExtensionArray, ExtensionScalarOpsMixin):
|
||
|
__array_priority__ = 1000
|
||
|
|
||
|
def __init__(self, values, dtype=None, copy=False, context=None):
|
||
|
for val in values:
|
||
|
if not isinstance(val, decimal.Decimal):
|
||
|
raise TypeError("All values must be of type " + str(decimal.Decimal))
|
||
|
values = np.asarray(values, dtype=object)
|
||
|
|
||
|
self._data = values
|
||
|
# Some aliases for common attribute names to ensure pandas supports
|
||
|
# these
|
||
|
self._items = self.data = self._data
|
||
|
# those aliases are currently not working due to assumptions
|
||
|
# in internal code (GH-20735)
|
||
|
# self._values = self.values = self.data
|
||
|
self._dtype = DecimalDtype(context)
|
||
|
|
||
|
@property
|
||
|
def dtype(self):
|
||
|
return self._dtype
|
||
|
|
||
|
@classmethod
|
||
|
def _from_sequence(cls, scalars, dtype=None, copy=False):
|
||
|
return cls(scalars)
|
||
|
|
||
|
@classmethod
|
||
|
def _from_sequence_of_strings(cls, strings, dtype=None, copy=False):
|
||
|
return cls._from_sequence([decimal.Decimal(x) for x in strings], dtype, copy)
|
||
|
|
||
|
@classmethod
|
||
|
def _from_factorized(cls, values, original):
|
||
|
return cls(values)
|
||
|
|
||
|
_HANDLED_TYPES = (decimal.Decimal, numbers.Number, np.ndarray)
|
||
|
|
||
|
def to_numpy(
|
||
|
self, dtype=None, copy: bool = False, na_value=no_default, decimals=None
|
||
|
) -> np.ndarray:
|
||
|
result = np.asarray(self, dtype=dtype)
|
||
|
if decimals is not None:
|
||
|
result = np.asarray([round(x, decimals) for x in result])
|
||
|
return result
|
||
|
|
||
|
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
||
|
#
|
||
|
if not all(
|
||
|
isinstance(t, self._HANDLED_TYPES + (DecimalArray,)) for t in inputs
|
||
|
):
|
||
|
return NotImplemented
|
||
|
|
||
|
inputs = tuple(x._data if isinstance(x, DecimalArray) else x for x in inputs)
|
||
|
result = getattr(ufunc, method)(*inputs, **kwargs)
|
||
|
|
||
|
def reconstruct(x):
|
||
|
if isinstance(x, (decimal.Decimal, numbers.Number)):
|
||
|
return x
|
||
|
else:
|
||
|
return DecimalArray._from_sequence(x)
|
||
|
|
||
|
if isinstance(result, tuple):
|
||
|
return tuple(reconstruct(x) for x in result)
|
||
|
else:
|
||
|
return reconstruct(result)
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
if isinstance(item, numbers.Integral):
|
||
|
return self._data[item]
|
||
|
else:
|
||
|
# array, slice.
|
||
|
item = pd.api.indexers.check_array_indexer(self, item)
|
||
|
return type(self)(self._data[item])
|
||
|
|
||
|
def take(self, indexer, allow_fill=False, fill_value=None):
|
||
|
from pandas.api.extensions import take
|
||
|
|
||
|
data = self._data
|
||
|
if allow_fill and fill_value is None:
|
||
|
fill_value = self.dtype.na_value
|
||
|
|
||
|
result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill)
|
||
|
return self._from_sequence(result)
|
||
|
|
||
|
def copy(self):
|
||
|
return type(self)(self._data.copy())
|
||
|
|
||
|
def astype(self, dtype, copy=True):
|
||
|
dtype = pandas_dtype(dtype)
|
||
|
if isinstance(dtype, type(self.dtype)):
|
||
|
return type(self)(self._data, context=dtype.context)
|
||
|
|
||
|
return super().astype(dtype, copy=copy)
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
if pd.api.types.is_list_like(value):
|
||
|
if pd.api.types.is_scalar(key):
|
||
|
raise ValueError("setting an array element with a sequence.")
|
||
|
value = [decimal.Decimal(v) for v in value]
|
||
|
else:
|
||
|
value = decimal.Decimal(value)
|
||
|
|
||
|
key = check_array_indexer(self, key)
|
||
|
self._data[key] = value
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self._data)
|
||
|
|
||
|
@property
|
||
|
def nbytes(self) -> int:
|
||
|
n = len(self)
|
||
|
if n:
|
||
|
return n * sys.getsizeof(self[0])
|
||
|
return 0
|
||
|
|
||
|
def isna(self):
|
||
|
return np.array([x.is_nan() for x in self._data], dtype=bool)
|
||
|
|
||
|
@property
|
||
|
def _na_value(self):
|
||
|
return decimal.Decimal("NaN")
|
||
|
|
||
|
def _formatter(self, boxed=False):
|
||
|
if boxed:
|
||
|
return "Decimal: {0}".format
|
||
|
return repr
|
||
|
|
||
|
@classmethod
|
||
|
def _concat_same_type(cls, to_concat):
|
||
|
return cls(np.concatenate([x._data for x in to_concat]))
|
||
|
|
||
|
def _reduce(self, name: str, skipna: bool = True, **kwargs):
|
||
|
|
||
|
if skipna:
|
||
|
# If we don't have any NAs, we can ignore skipna
|
||
|
if self.isna().any():
|
||
|
other = self[~self.isna()]
|
||
|
return other._reduce(name, **kwargs)
|
||
|
|
||
|
if name == "sum" and len(self) == 0:
|
||
|
# GH#29630 avoid returning int 0 or np.bool_(False) on old numpy
|
||
|
return decimal.Decimal(0)
|
||
|
|
||
|
try:
|
||
|
op = getattr(self.data, name)
|
||
|
except AttributeError as err:
|
||
|
raise NotImplementedError(
|
||
|
f"decimal does not support the {name} operation"
|
||
|
) from err
|
||
|
return op(axis=0)
|
||
|
|
||
|
|
||
|
def to_decimal(values, context=None):
|
||
|
return DecimalArray([decimal.Decimal(x) for x in values], context=context)
|
||
|
|
||
|
|
||
|
def make_data():
|
||
|
return [decimal.Decimal(random.random()) for _ in range(100)]
|
||
|
|
||
|
|
||
|
DecimalArray._add_arithmetic_ops()
|
||
|
DecimalArray._add_comparison_ops()
|