Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
44 lines
1.1 KiB
44 lines
1.1 KiB
4 years ago
|
import io
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
|
||
|
from .base import BaseExtensionTests
|
||
|
|
||
|
|
||
|
class BasePrintingTests(BaseExtensionTests):
|
||
|
"""Tests checking the formatting of your EA when printed."""
|
||
|
|
||
|
@pytest.mark.parametrize("size", ["big", "small"])
|
||
|
def test_array_repr(self, data, size):
|
||
|
if size == "small":
|
||
|
data = data[:5]
|
||
|
else:
|
||
|
data = type(data)._concat_same_type([data] * 5)
|
||
|
|
||
|
result = repr(data)
|
||
|
assert type(data).__name__ in result
|
||
|
assert f"Length: {len(data)}" in result
|
||
|
assert str(data.dtype) in result
|
||
|
if size == "big":
|
||
|
assert "..." in result
|
||
|
|
||
|
def test_array_repr_unicode(self, data):
|
||
|
result = str(data)
|
||
|
assert isinstance(result, str)
|
||
|
|
||
|
def test_series_repr(self, data):
|
||
|
ser = pd.Series(data)
|
||
|
assert data.dtype.name in repr(ser)
|
||
|
|
||
|
def test_dataframe_repr(self, data):
|
||
|
df = pd.DataFrame({"A": data})
|
||
|
repr(df)
|
||
|
|
||
|
def test_dtype_name_in_info(self, data):
|
||
|
buf = io.StringIO()
|
||
|
pd.DataFrame({"A": data}).info(buf=buf)
|
||
|
result = buf.getvalue()
|
||
|
assert data.dtype.name in result
|